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Abstract Consider a standard binary classification problem, in which (X, Y ) is a
random couple in X × {0, 1}, and the training data consist of n i.i.d. copies of (X, Y ).

Given a binary classifier f : X "→ {0, 1}, the generalization error of f is defined by
R( f ) = P{Y ̸= f (X)}. Its minimum R∗ over all binary classifiers f is called the
Bayes risk and is attained at a Bayes classifier. The performance of any binary classifier
f̂n based on the training data is characterized by the excess risk R( f̂n)− R∗. We study
Bahadur’s type exponential bounds on the following minimax accuracy confidence
function based on the excess risk:

ACn(M, λ) = inf
f̂n

sup
P∈M

P
(

R( f̂n) − R∗ ≥ λ
)

, λ ∈ [0, 1],

where the supremum is taken over all distributions P of (X, Y ) from a given class
of distributions M and the infimum is over all binary classifiers f̂n based on the
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training data. We study how this quantity depends on the complexity of the class
of distributions M characterized by exponents of entropies of the class of regres-
sion functions or of the class of Bayes classifiers corresponding to the distributions
from M. We also study its dependence on margin parameters of the classification
problem. In particular, we show that, in the case when X = [0, 1]d and M is the
class of all distributions satisfying the margin condition with exponent α > 0 and
such that the regression function η belongs to a given Hölder class of smoothness
β > 0,

− log ACn(M, λ)

n
≍ λ

2+α
1+α , λ ∈

[
Dn− 1+α

2+α+d/β , λ0

]

for some constants D, λ0 > 0.

Keywords Statistical learning · Classification · Fast rates · Optimal rate
of convergence · Excess risk · Margin condition · Bahadur efficiency

Mathematics Subject Classification 62G08 · 62G07 · 62H05 · 68T10

1 Introduction

Let (X ,A) be a measurable space. We consider a random variable (X, Y ) in X ×{0, 1}
with probability distribution denoted by P . Denote by µX the marginal distribution
of X in X and by

η(x) ! ηP (x) ! P(Y = 1|X = x) = E(Y |X = x)

the conditional probability of Y = 1 given X = x , which is also the regression function
of Y on X . Assume that we have n i.i.d. observations of the pair (X, Y ) denoted by
Dn = ((Xi , Yi ))i=1,...,n . The aim is to predict the output label Y for any input X in X
from the observations Dn .

We recall some standard facts of classification theory. A prediction rule is a measur-
able function f : X "−→ {0, 1}. To any prediction rule, we associate the classification
error (probability of misclassification):

R( f ) ! P
(
Y ̸= f (X)

)
.

It is well known (see, e.g., Devroye et al. [4]) that

min
f : X "−→{0,1}

R( f ) = R( f ∗) ! R∗,

where the prediction rule f ∗, called the Bayes rule, is defined by

f ∗(x) ! f ∗
P (x) ! I{η(x)≥1/2}, ∀x ∈ X ,
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where IA denotes the indicator function of A. The minimal risk R∗ is called the
Bayes risk. A classifier is a function, f̂n = f̂n(X,Dn), measurable with respect
to Dn and X with values in {0, 1}, that assigns to the sample Dn a prediction rule
f̂n(·,Dn) : X "−→ {0, 1}. A key characteristic of f̂n is its risk E[R( f̂n)], where

R( f̂n) ! P
(
Y ̸= f̂n(X)|Dn

)
.

The aim of statistical learning is to construct a classifier f̂n such that R( f̂n) is as close
to R∗ as possible. The accuracy of a classifier f̂n is usually measured by the quantity
E[R( f̂n) − R∗] called the (expected) excess risk of f̂n , where the expectation E is
taken with respect to the distribution of Dn . We say that the classifier f̂n learns with
the convergence rate ψ(n) if there exists an absolute constant C > 0 such that for any
integer n, E[R( f̂n) − R∗] ≤ Cψ(n).

Given a convergence rate, Theorem 7.2 of Devroye et al. [4] shows that no classifier
can learn with this rate for all underlying probability distributions P . To achieve some
rates of convergence, we need to restrict the class of possible distributions P. For
instance, Yang [20] provides examples of classifiers learning with a given convergence
rate under complexity assumptions expressed via the smoothness properties of the
regression function η. Under complexity assumptions alone, no matter how strong
they are, the rates cannot be faster than n−1/2 (cf. Devroye et al. [4]). Nevertheless,
they can approach n−1 if we add a control on the behavior of the regression function
η at the level 1/2 (the distance |η(·) − 1/2| is sometimes called the margin). This
behavior is usually characterized by the following condition, cf. [16]:

Margin condition. The probability distribution P on the space X × {0, 1} satisfies
the margin condition with exponent 0 < α < ∞ if there exists CM > 0 such that

µX
(
0 < |η(X) − 1/2| ≤ t

)
≤ CM tα, ∀0 ≤ t < 1. (1)

Equivalently, one can assume that (1) holds only for t ∈ [0, t0]with some t0 ∈ [0, 1).

This would imply (1) for all t ∈ [0, 1) (with a larger value of CM ). Under the margin
condition, fast rates, that is, rates faster than n−1/2, can be obtained for different
classifiers, cf. Tsybakov [16], Blanchard et al. [2], Bartlett et al. [3], Tsybakov and
van de Geer [18], Koltchinskii [9], Massart and Nédélec [12], Audibert and Tsybakov
[1], Scovel and Steinwart [14], among others.

In this paper, we will study the closeness of R( f̂n) to R∗ in a more refined way.
Our measure of performance is inspired by the Bahadur efficiency of estimation pro-
cedures, but in contrast to the classical Bahadur approach (cf., e.g., [7]), our results
are nonasymptotic.

For a classifier f̂n and for a toleranceλ > 0, define the accuracy confidence function
(or, shortly, the AC-function):

ACn( f̂n, λ) = P
(

R( f̂n) − R∗ ≥ λ
)

.

Here, P denotes the probability distribution of the observed sample Dn . Note that
ACn( f̂n, λ) = 0 for λ > 1 since 0 ≤ R( f ) ≤ 1 for all classifiers f . Moreover,
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R( f̂n) − R∗ ≤ 1/2 for all interesting classifiers f̂n . Indeed, it makes no sense to
deal with the probabilities of error R( f̂n) greater than 1/2 (note that R( f̂n) = 1/2 is
achieved when f̂n is the simple random guess classifier). Therefore, without loss of
generality, we can consider only λ ≤ 1/2. In fact,we will sometimes use a slightly
stronger restriction λ ≤ λ0 for some λ0 < 1/2 independent of n.

It is intuitively clear that if the tolerance is low (λ under some critical value λn), then
the probability ACn( f̂n, λ) is kept larger than some fixed level. On the opposite, for
λ ≥ λn , the quality of the procedure f̂n can be characterized by the rate of convergence
of ACn( f̂n, λ) toward zero as n → ∞. Observe that evaluating the critical value λn
yields, as a consequence, bounds and the associated rates for the excess risk ER( f̂n)−
R∗, which is a commonly used measure of performance.

For a class M of probability measures P , we define the minimax AC-function

ACn(M, λ) ! inf
f̂n∈Sn

sup
P∈M

P
(

R( f̂n) − R∗ ≥ λ
)
,

where Sn is the set of all classifiers. We will consider classes M = M(r,α) defined
by the following conditions:

(a) a margin assumption with exponent α,
(b) a complexity assumption expressed in terms of the rate of decay r > 0 of an

ε-entropy.

The main results of this paper can be summarized as follows. Fix r,α > 0 and set
λn = Dn− 1+α

2+α+r where D > 0. Then, we have an upper bound: there exist positive
constants C, c such that, for all classes M = M(r,α) satisfying the above two
conditions,

ACn(M, λ) ≤ C exp
{
−cnλ

2+α
1+α

}
, ∀ λ ≥ λn . (2)

Furthermore, we prove the corresponding lower bound: there exists a class M satis-
fying the same conditions (a) and (b) such that

ACn(M, λ) ≥ p0, 0 < λ ≤ λ−
n ≍ λn, (3)

ACn(M, λ) ≥ C ′ exp
{
−c′nλ

2+α
1+α

}
, λn ≍ λ+

n ≤ λ ≤ λ0 (4)

for some positive constants p0, C ′, c′, and 0 < λ0 < 1/2 depending only on CM and
α. Thus, we quantify the critical level phenomenon discussed above, and we derive the
exact exponential rate exp{−cnλ

2+α
1+α } for the minimax AC-function over the critical

level. In particular, this implies the following bounds on the minimax AC-function in
the case when X = [0, 1]d and M is the class of all distributions satisfying the margin
condition with exponent α > 0 and such that the regression function η belongs to a
Hölder class of smoothness β > 0 (see Sect. 5):
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ACn(M, λ) ≥ p0, 0 < λ ≤ D1n− 1+α
2+α+d/β ,

C ′ exp
{
−c′nλ

2+α
1+α

}
≤ ACn(M, λ) ≤ C exp

{
−cnλ

2+α
1+α

}
,

D2n− 1+α
2+α+d/β ≤ λ ≤ λ0.

Here, r = d/β. As an immediate consequence of (2)–(4), we get the minimax rate for
the excess risk:

inf
f̂n∈Sn

sup
P∈M

[
ER( f̂n) − R∗] ≍ n− 1+α

2+α+r (5)

for appropriate classes M, which implies the results previously obtained in Tsybakov
[16] and Audibert and Tsybakov [1].

It is interesting to compare (2)–(4) to the results for the regression problem in a
similar setting (see DeVore et al. [5] and Temlyakov [15]) since there are similarities
and differences. Let us quote these former results: suppose, in a supervised learning
setting, that we observe n i.i.d. observations of the pair (X, Y ), but here Y is valued
in [−M, M] instead of {0, 1} and we want to estimate

ξ(x) = E(Y |X = x).

Let ξ̂n(x) denote an estimator of ξ(x), and consider the loss

∥ξ̂n − ξ∥L2(µX ).

Here and in what follows, ∥ · ∥Lp(µX ), p ≥ 1, denotes the Lp(µX )-norm with respect
to the measure µX on X . In this context, ACn(M, λ) denotes the quantity

inf
ξ̂n

sup
P∈M

P
(
∥ξ̂n − ξ∥L2(µX ) ≥ λ

)
.

It is proved in [5] and [15] that if M = M((, µX ) is the set of probability measures
having µX as marginal distribution and such that ξ belongs to the set (, and the
entropy numbers of ( with respect to L2(µX ) are of order n−r (see [5] and [15]
for details), then there exist λ−

n , λ+
n , with λ−

n ≍ λ+
n ≍ n−r/(1+2r), and constants

δ0, C1, c1, C2, c2 such that

ACn(M((, µX ), λ) ≥ δ0, ∀ λ ≤ λ−
n , (6)

C1e−c1nλ2 ≤ ACn(M((, µX ), λ) ≤ C2e−c2nλ2
, ∀ λ ≥ λ+

n . (7)

These inequalities accurately describe the behavior of the minimax AC-function for
classes M((, µX ) with any marginal distribution µX . The same inequalities hold for
the following quantity:

sup
µX

ACn(M((, µX ), λ).
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Our results for the classification problem are somewhat weaker than the above results
for the regression problem. In Sects. 3 and 4, we prove the upper bounds for the cor-
responding classes in the case of any marginal distribution µX such that the margin
assumption holds. This is analogous to what was obtained for the regression problem.
However, in Sect. 5, we only prove the matching lower bounds for a special mar-
ginal distribution µX . Thus, we obtain an accurate description of the behavior of the
supremum over marginal distributions supµX

ACn(M, λ) and not of the individual
AC-functions for each marginal distribution µX .

The similarity of the results in the two different settings is that there is a regime
of exponential concentration, which holds for any λ greater than a critical level. This
critical level, which is also the minimax rate, depends on the complexity of the class
characterized by r . We can also observe that the exponents in the bounds ( 2+α

1+α in
classification, 2 in regression) do not depend on the complexity parameter r .

The differences lie in two facts, since the margin condition is entering the game
at two levels. The first one is the critical value itself, n− 1+α

2+α+r . Note that here α is
appearing in a favorable way (the larger it is, the better the rate). This is intuitively
clear since larger α corresponds to sharper decision boundaries.

The second place where a difference occurs is the rate in the exponent λ
2+α
1+α com-

pared to λ2 in a regression setting. The margin condition influences the rate 2+α
1+α , and

this time again in a favorable way with respect to α (the rate improves as α grows).
For α → 0, that is, when there is no margin condition, we approach the same rate as
in regression.

2 Properties Related to the Margin Condition

In this section, we discuss some facts related to the margin condition. We first recall
that it can be equivalently defined in the following way, cf. [16]. Let G0 = {x : η(x) =
1/2} denote the decision boundary.

Proposition 1 Fix 0 < α < ∞. A probability measure P satisfies the margin condi-
tion (1) if there exists a positive constant cM such that, for any Borel set G ⊂ X ,

∫

G

|2η(x) − 1|µX (dx) ≥ cMµX (G)κ, (8)

where κ = (1 + α)/α. Conversely, if the margin condition (1) holds, then there exists
a positive constant cM such that, for any Borel set G ⊂ X ,

∫

G

|2η(x) − 1|µX (dx) ≥ cMµX (G\G0)
κ. (9)

Proof We first prove (9). Let G be given. Clearly, it suffices to assume that
µX (G\G0) > 0. Choose t from the equation µX (G\G0) = 2CM tα , and set
A = {x : |η(x) − 1/2| ≤ t}. Then, by the margin condition (1),
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µX (G\A) ≥ µX (G\G0) − µX (A\G0) ≥ µX (G\G0) − CM tα ≥ CM tα.

Therefore,
∫

G

|2η(x) − 1|µX (dx) ≥ 2
∫

G\A

tµX (dx)

≥ 2CM tα+1 = (2CM )−1/αµX (G\G0)
1+1/α.

Conversely, assume that for some κ > 1, inequality (8) holds for any Borel set G.
Take G = {x : 0 < |η(x) − 1/2| ≤ t}. Then, (8) yields

µX (0 < |η(X) − 1/2| ≤ t) ≤

⎛

⎜⎝c−1
M

∫

0<|η(x)−1/2|≤t

|2η(x) − 1|µX (dx)

⎞

⎟⎠

1/κ

≤
(
2c−1

M t µX (0 < |η(X) − 1/2| ≤ t)
)1/κ

.

Solving this inequality with respect to µX (0 < |η(X) − 1/2| ≤ t), we obtain the
margin condition (1). ⊓1

Remark 1 In what follows, we will distinguish between the margin condition (1) and
the margin condition (8) with κ ≥ 1. If κ = 1, then (8) still makes sense, but it
cannot be directly linked to margin condition (1) in terms of α; formally, one would
set α = +∞, but this lacks rigor. As suggested in [12], it is more appropriate to define
the analog of (1) for κ = 1 in the form µX

(
0 < |η(X) − 1/2| ≤ t0

)
= 0, which

means that the regression function η has a jump at the decision boundary. The case
κ = 1 will be treated separately in Sect. 4.

We now state an easy consequence of Proposition 1. For any prediction rule f , set
f ∗

P, f = f ∗
P I{η ̸=1/2} + f I{η=1/2}.

Lemma 1 If the probability measure P satisfies the margin condition (1), then for
any prediction rule f ,

R( f ) − R∗ ≥ (2CM )−1/α∥ f − f ∗
P, f ∥

1+α
α

L1(µX ). (10)

Analogously, if the probability measure P satisfies the margin condition (8) with some
κ ≥ 1, then for any prediction rule f ,

R( f ) − R∗ ≥ cM∥ f − f ∗
P∥κ

L1(µX ). (11)

Proof Note that, for any prediction rule f ,

R( f ) − R∗ =
∫

DP ( f )

|2η(x) − 1|µX (dx) =
∫

D′
P ( f )

|2η(x) − 1|µX (dx),
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where DP ( f ) ! {x : f ∗
P (x) ̸= f (x)} and D′

P ( f ) ! {x : f ∗
P, f (x) ̸= f (x)}. Thus,

(10) follows from (9), the relations D′
P ( f )\G0 = D′

P ( f ), and

µX (D′
P ( f )) = ∥ f − f ∗

P, f ∥L1(µX ).

Similar arguments for DP ( f ) together with (8) imply (11). ⊓1

Finally, we have the following property:

Proposition 2 For any Borel function η̄ : X → [0, 1] and any distribution P of
(X, Y ) satisfying the margin condition (8) with some κ > 1, we have

∥ fη̄ − f ∗
P∥L1(µX ) ≤ 2CM∥η̄ − ηP∥αL∞(µX ),

where fη̄(x) = I{η̄(x)≥1/2} and α = (1 − κ)−1.

Proof By Lemma 5.1 in [1],

R( fη̄) − R∗ ≤ 2CM∥η̄ − ηP∥1+α
L∞(µX ). (12)

This and Lemma 1 yield the result. ⊓1

Corollary 1 Let P be a class of joint distributions of (X, Y ) satisfying the margin
condition (8) with some κ > 1 and all having the same marginal µX . Then, for any
pair P, P̄ ∈ P with the corresponding regression functions η, η̄ and decision rules
fη(x) = I{η(x)≥1/2}, fη̄(x) = I{η̄(x)≥1/2}, we have

∥ fη̄ − fη∥L1(µX ) ≤ 2CM∥η̄ − η∥αL∞(µX ).

3 Upper Bound Under Complexity Assumption on the Regression Function

In this section, we prove an upper bound of the form (2) for a class of probability
distributions P , for which the complexity assumption (b) (cf. the introduction) is
expressed in terms of the entropy of the class of underlying regression functions ηP .

For g : X → R, define the sup-norm ∥g∥∞ = supx∈X |g(x)|.
Fix some positive constants r,α, CM , B. Let M(r,α) = M(r,α, CM , B) be any

set of joint distributions P of (X, Y ) satisfying the following two conditions:

(i) The margin condition (1) with exponent α and constant CM .
(ii) The regression function η = ηP belongs to a known class of functions U , which

admits the ε-entropy bound

H(ε,U , ∥ · ∥∞) ≤ Bε−r , ∀ϵ > 0. (13)

Here, the ε-entropy H(ε,U , ∥ · ∥∞) is defined as the natural logarithm of the
minimal number of ε-balls in the ∥ · ∥∞ norm needed to cover U .
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For any prediction rule f , we define the empirical risk

Rn( f ) = 1
n

n∑

i=1

I{ f (Xi ) ̸=Yi }.

We consider the classifier f̂n,1(x) = I{η̂n(x)≥1/2}, where

η̂n = argminη′∈Nε
Rn( fη′).

Here, fη′(x) = I{η′(x)≥1/2} and Nε denotes a minimal ε-net on U in the ∥ · ∥∞ norm;
i.e., Nε is the minimal subset of U such that the union of ε-balls in the ∥ · ∥∞ norm
centered at the elements of Nε covers U .

Theorem 1 Let r,α, CM , B be finite positive constants. Set ε = εn = n− 1
2+α+r . Then,

there exist positive constants c and c′ depending only on r,α, CM , B such that

sup
P∈M(r,α)

P{R( f̂n,1) − R( f ∗
P ) ≥ λ} ≤ 2 exp{−cnλ

2+α
1+α }

for λ ≥ c′n− 1+α
2+α+r .

This theorem has an immediate consequence in terms of AC-functions.

Corollary 2 There exist d > 0, c > 0 such that for λn = dn− 1+α
2+α+r , we have

ACn(M(r,α), λ) ≤ 2e−cnλ
2+α
1+α

, ∀ λ ≥ λn .

Proof of Theorem 1 We follow the argument of Theorem 4.2 in [1] with suitable mod-
ifications. Set d(η′) ! R( fη′) − R( f ∗

P ) ≡ R( fη′) − R( f ∗
P,η′), where, for brevity,

f ∗
P,η′ ! f ∗

P, fη′
. Let η̄ ∈ Nε be such that ∥η̄− ηP∥∞ ≤ ε. Using Lemma 5.1 in [1], cf.

(12) above, we get

d(η̄) = R( fη̄) − R∗ ≤ 2CM∥η̄ − ηP∥1+α
∞ ≤ 2CMε

1+α ≤ λ/2 (14)

for any λ ≥ 4CM n− 1+α
2+α+r . Define a set of functions Gε = {η′ ∈ Nε : d(η′) ≥ λ}, and

introduce the centered empirical increments

Zn(η′) = (Rn( fη′) − Rn( f ∗
P,η′)) − (R( fη′) − R( f ∗

P,η′)).

Then,

P(R( f̂n,1) − R( f ∗
P ) ≥ λ) ≤ P(∃η′ ∈ Gε : Rn( fη′) − Rn( fη̄) ≤ 0)

≤
∑

η′∈Gε

P(d(η′) + Zn(η′) − d(η̄) − Zn(η̄) ≤ 0).
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Note that for any η′ ∈ Gε, we have

d(η′) − d(η̄) ≥ d(η′)/2 ≥ λ/2.

Using this remark and (13), we find

P(R( f̂n,1) − R( f ∗
P ) ≥ λ) ≤

∑

η′∈Gε

P(Zn(η′) ≤ −d(η′)/4) + P(Zn(η̄) ≥ λ/4)

≤ exp(Bε−r ) max
η′∈Gε

P(Zn(η′) ≤ −d(η′)/4)

+ P(Zn(η̄) ≥ λ/4). (15)

Now, Zn(η′) = 1
n

∑n
i=1 ξi (η

′), where

ξi (η
′) = I{ fη′ (Xi ) ̸=Yi } − I{ f ∗

P,η′ (Xi ) ̸=Yi } − E
(

I{ fη′ (Xi ) ̸=Yi } − I{ f ∗
P,η′ (Xi ) ̸=Yi }

)
.

Clearly, |ξi (η
′)| ≤ 2, and using (10) of Lemma 1,

E(ξi (η
′)2) ≤ E

([
I{ fη′ (Xi ) ̸=Yi } − I{ f ∗

P,η′ (Xi ) ̸=Yi }
]2

)

= ∥ fη′ − f ∗
P,η′ ∥L1(µX )

≤
[
(2CM )1/α(R( fη′) − R( f ∗

P ))
] α

1+α

= (2CM )
1

1+α (d(η′))
α

1+α .

Therefore, we can apply Bernstein’s inequality to get

P(Zn(η′) ≤ −d(η′)/4) ≤ exp

(

− nd2(η′)/16

2((2CM )
1

1+α (d(η′))
α

1+α + d(η′)/3)

)

≤ exp

(

− nd2(η′)

c′
1(d(η′))

α
1+α

)

,

where c′
1 = 2((2CM )

1
1+α + 1/3) and we used that d(η′) ≤ d

α
1+α (η′) since d(η′) ≤ 1.

Thus, for any η′ ∈ Gε, we obtain

P(Zn(η′) ≤ −d(η′)/4) ≤ exp
(
−nλ

2+α
1+α /c′

1

)
.

As a consequence,

exp(Bε−r ) max
η′∈Gε

P(Zn(η′) ≤ −d(η′)/4) ≤ exp
(

Bn
r

2+α+r − nλ
2+α
1+α /c′

1

)

≤ exp
(

− nλ
2+α
1+α /2c′

1

)
, (16)
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where we used that λ ≥ c′n− 1+α
2+α+r for some large enough c′ > 0. Another application

of Bernstein’s inequality and (14) yields

P(Zn(η̄) ≥ λ/4) ≤ exp

(

− nλ2/16

2((2CM )
1

1+α (d(η̄))
α

1+α + λ/3)

)

≤ exp

(

− nλ2

c′
1(λ

α
1+α + λ)

)

.

For λ ≤ 1, the last inequality implies

P(Zn(η̄) ≥ λ/4) ≤ exp

(

−nλ
2+α
1+α

2c′
1

)

.

This, together with (15) and (16), yields result of the theorem for λ ≤ 1. If λ > 1, it
holds trivially since d(η′) ≤ 1 for all η′.

4 Upper Bound Under Complexity Assumption on the Bayes Classifier

This section provides a result analogous to that of Sect. 3 when the complexity assump-
tion (b) (cf. the introduction) is expressed in terms of the entropy of the class of
underlying Bayes classifiers f ∗

P rather than of that of regression functions ηP .
First, we introduce some definitions. Let F be a class of measurable functions from

a measurable space (S,AS, µ) into [0, 1]. Here, µ is a σ -finite measure.
For 1 ≤ q ≤ ∞ and ε > 0, let N[ ](ε,F , ∥ · ∥Lq (µ)) denote the Lq(µ)-bracketing

numbers of F . That is, N[ ](ε,F , ∥ · ∥Lq (µ)) is the minimal number N of functional
brackets

[ f −
j , f +

j ] ! {g : f −
j ≤ g ≤ f +

j }, j = 1, . . . , N ,

such that

F ⊂
N⋃

j=1

[ f −
j , f +

j ] and ∥ f +
j − f −

j ∥Lq (µ) ≤ ε, j = 1, . . . , N .

The bracketing ε-entropy of F in the ∥ · ∥Lq (µ)-norm is defined by

H[ ](ε,F , ∥ · ∥Lq (µ)) ! log N[ ](ε,F , ∥ · ∥Lq (µ)).

We will consider a class of probability distributions P of (X, Y ) characterized
by the complexity of the corresponding Bayes classifiers. Specifically, fix some ρ ∈
(0, 1),α > 0, CM > 0, cµ > 0, B ′ > 0, and let M∗(ρ,α) = M∗(ρ,α, CM , cµ, B ′)
be any set of joint distributions P of (X, Y ) satisfying the following conditions:
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(i) The marginal distribution µX of X is absolutely continuous with respect to a
σ -finite measure µ on (X ,A), and (dµX/dµ)(x) ≤ cµ for µ-almost all x ∈ X .

(ii) The margin condition (8) with exponent κ = (1 + α)/α, 0 < α < ∞, and
constant cM is satisfied.

(iii) The Bayes classifier f ∗
P belongs to a known class of prediction rules F satisfying

the bracketing entropy bound

H[ ](ε,F , ∥ · ∥L1(µ)) ≤ B ′ε−ρ, ∀ε > 0. (17)

We consider a classifier f̂n,2 that minimizes the empirical risk over the class F :

f̂n,2 ! argmin f ∈F Rn( f ).

The main result of this section is that for f̂n,2, we have the following exponential upper
bound.

Theorem 2 Let ρ ∈ (0, 1), and let α, cM , cµ, B ′ be positive constants. Then, there
exist positive constants c and c′ depending only on ρ,α, cM , cµ, B ′ such that

sup
P∈M∗(ρ,α)

P
{

R( f̂n,2) − R( f ∗
P ) ≥ λ

}
≤ e exp

{
−cnλ

2+α
1+α

}

for λ ≥ c′n− 1+α
2+α(1+ρ) .

Furthermore, the same classifier f̂n,2 satisfies a similar exponential bound under
the margin condition (8) with κ = 1. To consider this case, we define the class of
distributions M∗(ρ,∞) = M∗(ρ, cM , cµ, B ′) as being a set of joint distributions P
of (X, Y ) satisfying the same assumptions as M∗(ρ,α), 0 < α < ∞, with the only
difference being that assumption (ii) is replaced by

(ii′) The margin condition (8) with exponent κ = 1 and constant cM > 0 is satisfied.

The upper bound for this class is as follows.

Theorem 3 Let ρ ∈ (0, 1), and let cM , cµ, B ′ be positive constants. Then there exist
positive constants c and c′ depending only on ρ, cM , cµ, B ′ such that

sup
P∈M∗(ρ,∞)

P{R( f̂n,2) − R( f ∗
P ) ≥ λ} ≤ e exp{−cnλ}

for λ ≥ c′n− 1
1+ρ .

The proofs of Theorems 2 and 3 are given in the appendix. Note that this proof can
be deduced in several different ways from well-known general excess risk bounds in
learning theory (see, e.g., Massart [11] or Koltchinskii [10] and references therein).
The version of the proof given below follows [10].
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Inspection of the proof shows that Theorems 2 and 3 remain valid if we drop
condition (i) and replace (iii) by the following more general condition:

(iii′) The Bayes classifier f ∗
P belongs to a known class of prediction rules F satisfying

the bracketing entropy bound

H[ ](ε,F , ∥ · ∥L1(µX )) ≤ B ′ε−ρ, ∀ε > 0.

Condition (iii’) is, in fact, an assumption on both F and the class of possible marginal
densities µX . The reason why we have introduced conditions (i) and (iii) instead of
(iii’) is that they are easily interpretable. Indeed, in this way, we decouple assumptions
on F and assumptions on µX . The case that is even easier corresponds to considering a
subclass of M∗(ρ,α) composed of measures P ∈ M∗(ρ,α) with the same marginal
µX . Then, again we only need to assume (ii) and (iii’), but now (iii’) should hold for
one fixed measure µX and not simultaneously for a set of possible marginal measures.

We finish this section with a comparison of Theorems 1 and 2. They differ in
imposing entropy assumptions on different objects, regression function ηP and Bayes
classifier f ∗

P , respectively. Also, in Theorem 1, the complexity is measured by the usual
entropy for the sup-norm, whereas in Theorem 2, it is done in terms of the bracketing
entropy for the L1-norm. Note that for many classes, the bracketing and the usual
ε-entropies behave similarly, so that the relationship between the corresponding rates
of decay r in (13) and ρ in (18) is only determined by the relationship between the
sup-norm of the regression function η and the L1-norm on the induced Bayes classifier.
In this respect, Corollary 1 is insightful, suggesting the correspondence

ρ = r
α

.

Finally, note that the ranges of the complexity parameters as well as the assumptions
on the measure µX in Theorems 1 and 2 are somewhat different. Namely, Theorem 1
holds under no additional assumption on µX except for the margin condition and covers
classes with high complexity (all r > 0 are allowed). Theorem 2 needs a relatively
mild additional assumption (i) on µX and restricts the complexity by the condition
ρ < 1. The classifier f̂n,2 of Theorem 2 does not require the knowledge of the margin
parameter α. Thus, f̂n,2 is adaptive to the margin parameter. On the other hand, the
classifier f̂n,1 of Theorem 1 does require the knowledge of α which is involved in the
definition of parameter ε of the net Nε. Note that for classes F of high complexity
(with ρ > 1), the empirical risk minimization over the whole class F usually does
not provide optimal convergence rates. In such cases, some form of regularization is
needed. It could be based on penalized empirical risk minimization (see, e.g., [10])
over proper sieves of subclasses of F (for instance, sieves of ε-nets for F).

5 Minimax Lower Bounds

In this section, we will assume that the regression function η belongs to a Hölder class
defined as follows.
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For any multi-index s = (s1, . . . , sd) and any x = (x1, . . . , xd) ∈ Rd , we define
|s| = ∑d

i=1 si , s! = s1! . . . sd !, xs = xs1
1 . . . xsd

d and ∥x∥ ! (x2
1 + · · · + x2

d )1/2. Let
Ds denote the differential operator Ds ! ∂s1+···+sd

∂x
s1
1 ···∂x

sd
d

.

For β > 0, let ⌊β⌋ be the maximal integer that is strictly less than β. For any
x ∈ [0, 1]d and any ⌊β⌋ times continuously differentiable real valued function g on
[0, 1]d , we denote by gx its Taylor polynomial of degree ⌊β⌋ at point x ∈ [0, 1]d :

gx (x ′) !
∑

|s|≤⌊β⌋

(x ′ − x)s

s! Ds g(x).

Let β > 0, L > 0. The Hölder class of functions .(β, L , [0, 1]d) is defined as
the set of all functions g : [0, 1]d → R that are ⌊β⌋ times continuously differentiable
and satisfy, for any x, y ∈ [0, 1]d , the inequality

|g(x ′) − gx (x ′)| ≤ L∥x ′ − x∥β .

Fix α > 0,β > 0, L > 0, and a probability distribution µX on [0, 1]d . Denote by
M ′(µX ,α,β) the class of all joint distributions P of (X, Y ) such that

(i) The marginal distribution of X is µX ;
(ii) The margin condition (1) is satisfied with some constant CM > 0;

(iii) The regression function η = ηP belongs to the Hölder class .(β, L , [0, 1]d).

Theorem 4 There exist a marginal distributionµ∗
X and positive constants C ′

1, C ′
2, c′,

d ′
1 , d ′

2, λ
′
0 depending only on α,β, L , d, and CM such that for any classifier f̂n,

sup
P∈M′(µ∗

X ,α,β)

P
{

R( f̂n) − R∗ ≥ λ
}

≥ C ′
1

for any 0 < λ ≤ d ′
1n− 1+α

2+α+d/β , and

sup
P∈M′(µ∗

X ,α,β)

P
{

R( f̂n) − R∗ ≥ λ
}

≥ C ′
2 exp

{
− c′nλ

2+α
1+α

}

for any d ′
2n− 1+α

2+α+d/β ≤ λ ≤ λ′
0.

The proof of Theorem 4 including the explicit form of the marginal distribution µ∗
X

is given in Sect. 6.
Note that there exists a constant B > 0 such that the set of regression functions

U = {ηP , P ∈ M′(µ∗
X ,α,β)} satisfies the entropy bound

H(ε,U , ∥ · ∥∞) ≤ Bε−r , ∀ε > 0, (18)
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where r = d/β. Indeed, (18) holds since U = {η ∈ .(β, L , [0, 1]d) : 0 ≤ η(x) ≤ 1},
and

H(ε,.(β, L , [0, 1]d), ∥ · ∥∞) ≤ Bε−d/β ,

cf. Kolmogorov and Tikhomirov [8]. Thus, for the choice of µ∗
X described in Sect. 6,

the class of probability distributions M′(µ∗
X ,α,β) is a particular case of M(r,α)

(with r = d/β) defined in Sect. 3. Theorem 4 shows that, for this particular case, it is
impossible to obtain faster rates for AC-functions than those established in Theorem 1.
In this sense, Theorem 4 provides a lower bound that matches the upper bound of
Theorem 1.

6 Proof of Theorem 4

The proof of Theorem 4 will be divided into steps. First, we construct a finite family
P1, . . . , PN of probability distributions of the pair (X, Y ). Second, we apply the gen-
eral tools for minimax lower bounds (cf. the appendix) to prove a minimax lower bound
on this finite family. Finally, we choose the parameters of the family P1, . . . , PN in
order to embed it into the class M′(µ∗

X ,α,β), which leads to the result of Theorem 4.

6.1 Construction of a Finite Family of Probability Measures

We proceed here similarly to [1]. Let σ = (σ1, . . . , σb) be a binary vector of length
b with elements σ j ∈ {−1, 1}. Let ϕ be an infinitely differentiable function with
compact support in Rd such that 0 ≤ ϕ(x) ≤ c for some constant c ∈ (0, 1/2).
Consider functions ϕ1, . . . ,ϕb on Rd satisfying

(a) ϕ j is a shift of ϕ, j = 1, . . . , b;
(b) the supports 0 j of functions ϕ j are disjoint.

Denote by .(b) the set of all binary vectors σ of length b. For every σ ∈ .(b),
define

φσ (x) !
b∑

j=1

σ jϕ j (x), ησ (x) ! (1 + φσ (x))/2.

Consider the following class ( of regression functions:

( ! {ησ , σ ∈ .(b)}.

In what follows, we assume without loss of generality that b ≥ 16. By the Varshamov-
Gilbert lemma (cf. [17], p. 104), there is a subset S of .(b) such that cardinality
|S| ≥ 2b/8, and for any two different elements σ , and σ ′ from S, we have

∥σ − σ ′∥ℓ1 ≥ b/4.
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Let X = [0, 1]d , q ∈ N, and b ! qd . Let ψ be a nonnegative infinitely differentiable
function with support (0, 1)d such that ψ ≤ c < 1/2 and

∫

(0,1)d

ψ(x)dx > 0. For

given parameters δ ∈ (0, 1) (small parameter) and α ∈ [0,∞), define

ϕ(x) ! δ1/(1+α)ψ(qx).

For a vector k = (k1, . . . , kd), k j ∈ {0, . . . , q −1}, j = 1, . . . , d, define a grid point

xk !
(

xk
1 , . . . , xk

d

)
, xk

j = k j/q, j = 1, . . . , d.

We now consider b functions ϕk(x) = ϕ(x − xk) and the corresponding class ( of
regression functions defined above. We set N ! |S| and consider a subset (′ ⊂ (:

(′ ! {ησ , σ ∈ S} = {ηi }N
i=1.

Now, recalling that the regression function η(X) is the conditional probability of
Y = 1 given X , we define the joint probability measures Pσ , σ ∈ S, of (X, Y ) (these
measures will be also denoted by Pi , i = 1, . . . , N ) :

Pσ (Y = 1, X ∈ A) =
∫

A

ησ (x)µX (dx)

for any Borel set A, where the marginal distribution µX = µ∗
X is specified as follows.

First, for all x such that

1/(4q) ≤ x j − xk
j ≤ 3/(4q), j = 1, . . . , d,

the distribution µ∗
X has a density w.r.t. the Lebesgue measure

dµ∗
X

dx
(x) ! w

Leb(B(0, 1/(4q))
= 2dbw,

where B(x, r) is the ℓ∞-ball of radius r centered at x, Leb(·) denotes the Lebesgue
measure, and w = Cδα/(1+α)/b for some C ∈ (0, 1]. Second, we set dµ∗

X (x)/dx = 0
for all other x such that at least one of ηi (x) is not 1/2. Finally, on the comple-
mentary set A0 ⊂ [0, 1]d where all ηi (x) are equal to 1/2, we set dµ∗

X (x)/dx !
(1 − bw)/Leb(A0) to ensure that

∫
Rd dµ∗

X (x) = 1 (we assume that the support of the
function ψ belongs to the set [γ , 1 − γ ] for a small γ > 0; then, it is easy to see that
Leb(A0) > 0).

We now impose an extra restriction on ϕ and prove that under this restriction, the
measures Pi satisfy the margin condition with parameter α. Assume thatψ(x) = c2 >

0 for x satisfying the inequalities 1/4 ≤ x j ≤ 3/4, j = 1, . . . , d, and ψ(x) < c2 for
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other x . Here, c2 ∈ (0, 1/2). Then,

µ∗
X (0 < |ησ (X) − 1/2| ≤ t) = µ∗

X

⎛

⎝0 < |
b∑

j=1

σ jϕ j (X)| ≤ 2t

⎞

⎠

= bµ∗
X (0 < ϕ(X) ≤ 2t),

because the supports0 j of functions ϕ j are disjoint. Then, using the definition ϕ(x) !
δ1/(1+α)ψ(qx), we obtain that

µ∗
X (0 < ϕ(X) ≤ 2t) = w if c2δ

1/(1+α) ≤ 2t

and µ∗
X (0 < ϕ(X) ≤ 2t) = 0 for all other t > 0. Therefore,

bµ∗
X (0 < ϕ(X) ≤ 2t) ≤ Cδα/(1+α) I{c2δ1/(1+α)≤2t} ≤ C(2t/c2)

α, t > 0.

Thus, all Pi satisfy the margin condition with parameter α and constant CM =
C(2/c2)

α .
Minimax lower bound for the finite set of measures P1, . . . , PN . Let us check the
assumptions of Theorem 5 in the appendix for the set of probability measures
P1, . . . , PN defined above. Since 0 < c < 1/2, we have 1/4 ≤ ηi (x) ≤ 3/4 for
all δ ∈ (0, 1) and all x ∈ (0, 1)d . Next, for any σ, σ ′ ∈ S, we have

∥ηPσ − ηPσ ′ ∥2
L2(µ∗

X ) ≤ b∥ϕ∥2
L∞(µ∗

X )w ≤ Cδ(2+α)/(1+α),

and for σ ̸= σ ′, in view of (19) and (19),

∥ f ∗
Pσ − f ∗

Pσ ′ ∥L1(µ
∗
X ) = 2

b∑

j=1

I{σ j ̸=σ ′
j }

∫

B(0,1/(4q))

2dbw dx

= ∥σ − σ ′∥ℓ1w ≥ c1δ
α/(1+α),

where c1 = C/4. Thus, the assumptions of Theorem 5 in the appendix are satisfied
with N = |S| ≥ 2b/8 ≥ 2b/16 + 1, and

γ 2 = Cδ(2+α)/(1+α), s = c1δ
α/(1+α). (19)

Therefore, we get the following result:

Proposition 3 Fix α > 0, δ ∈ (0, 1), and q ∈ N such that b = qd ≥ 16. Let
P1, . . . , PN be the family of probability measures defined above. Then, for any clas-
sifier f̂n, we have
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max
1≤k≤N

Pk

{

∥ f̂n − f ∗
Pk

∥L1(µ
∗
X ) ≥ Cδ

α
1+α

8

}

≥ 1
12

min
(

1, 2
b
16 exp

{
−c3nδ

2+α
1+α

})
,

(20)

where C ∈ (0, 1) is the constant used in the construction of P1, . . . , PN , and c3 > 0
is a constant depending only on C. Furthermore, for 0 < λ < λ0,

max
1≤k≤N

Pk{R( f̂n) − R( f ∗
Pk

) ≥ λ} ≥ 1
12

min
(

1, 2
b
16 exp

{
− c4nλ

2+α
1+α

})
, (21)

where λ0 = 16−(1+α)/αCc2, and c4 > 0 is a constant depending only on C, c2 and α.

Proof Bound (20) follows from Theorem 5 and (19). To prove (21), we combine (20)
with Lemma 1, set λ = λ0δ, and use that CM = C(2/c2)

α by the construction of
P1, . . . , PN .

Minimax lower bound on the class M′(µ∗
X ,α,β). We now prove Theorem 4

using a particular instance of the constructions introduced above in this section.

Set q = ⌈c5δ
− 1

(1+α)β ⌉, where c5 > 0 is a constant and ⌈x⌉ denotes the minimal
integer greater than x . It is easy to see that if c5 is small enough, then we have
ϕ ∈ .(β, L , [0, 1]d), implying that ησ ∈ .(β, L , [0, 1]d) for all σ ∈ S. Choose
such a small c5. It is also easy to see that one can always choose constants C ∈ (0, 1)

and c2 ∈ (0, 1/2) in the construction of Sect. 6 in such a way that C(2/c2)
α = CM ,

which is needed to satisfy the margin condition (ii). Then, for any fixed δ ∈ (0, 1),
the finite family of probability distributions {P1, . . . , PN } constructed above (and
depending on δ) belongs to M′(µ∗

X ,α,β). To indicate this dependence on δ explic-
itly, denote this family by Pλ, where λ = λ0δ and λ0 is defined in Proposition 3. Since
Pλ ⊂ M′(µ∗

X ,α,β), for any λ < λ0, we can write

sup
P∈M′(µ∗

X ,α,β)

P{R( f̂n) − R∗ ≥ λ} ≥ max
P∈Pλ

P{R( f̂n) − R∗ ≥ λ}

and then estimate the right-hand side of this inequality using (21) of Proposition 3.
Note that in Proposition 3 we have the assumption qd ≥ 16, which is satisfied if
δ ≤ δ0, where δ0 is a small enough constant depending only on the constants in the
definition of the class M′(µ∗

X ,α,β). Thus, we obtain

sup
P∈M′(µ∗

X ,α,β)

P{R( f̂n) − R∗ ≥ λ} ≥ 1
12

min
(

1, 2b/16 exp
{

− c4nλ
2+α
1+α

})

≥ 1
12

min
(

1, exp
{

c6λ
− d

(1+α)β − c4nλ
2+α
1+α

})

for all 0 < λ < λ′
0, where λ′

0 > 0 and c6 > 0 depend only on the constants in the
definition of the class M′(µ∗

X ,α,β). This immediately implies the theorem. ⊓1
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Appendix

Proof of Theorems 2 and 3. We deduce Theorems 2 and 3 from the following fact that
we state here as a proposition.

Proposition 4 Let either 0 < α < ∞ and κ = 1+α
α or α = ∞ and κ = 1. Then,

there exists a constant C∗ > 0 such that, for all t > 0,

sup
P∈M∗(ρ,α)

P
{

R( f̂n,2) − R( f ∗
P ) ≥ C∗

[
n− κ

2κ−1+ρ ∨
(

t
n

) κ
2κ−1

]}
≤ e1−t .

It is easy to see that Theorem 2 follows from this proposition by taking t = cnλ
2+α
1+α

with λ ≥ c′n− 1+α
2+α(1+ρ) for some constants c, c′ > 0, and using that κ = 1+α

α . To

obtain Theorem 3, we take t = cnλ with λ ≥ c′n− 1
1+ρ .

Proposition 4 will be derived from a general excess risk bound in abstract empirical
risk minimization ([10], Theorem 4.3). We will state this result here for completeness.
To this end, we need to introduce some notation. Let G be a class of measurable
functions from a probability space (S,AS, P) into [0, 1], and let Z1, . . . , Zn be i.i.d.
copies of an observation Z sampled from P. For any probability measure P and any
g ∈ G, introduce the following notation for the expectation:

Pg =
∫

S

gd P.

Denote by Pn the empirical measure based on (Z1, . . . , Zn), and consider the mini-
mizer of the empirical risk

ĝn ! argming∈G Png.

For a function g ∈ G, define the excess risk

EP (g) ! Pg − inf
g′∈G

Pg′.

The set

FP (δ) ! {g ∈ G : EP (g) ≤ δ}

is called the δ-minimal set. The size of such a set will be controlled in terms of its
L2(P)-diameter

D(δ) ! sup
g,g′∈FP (δ)

∥g − g′∥L2(P)

123



440 Constr Approx (2014) 39:421–444

and also in terms of the following “localized empirical complexity”:

φn(δ) ! E sup
g,g′∈FP (δ)

|(Pn − P)(g − g′)|.

We will use these complexity measures to construct an upper confidence bound on the
excess risk EP ( f̂n,2). For a function ψ : R+ "→ R+, define

ψ♭(δ) ! sup
σ≥δ

ψ(σ )

σ
.

Let

V t
n (δ) ! 4

[
φ♭n(δ) +

√
(D2)♭(δ)

t
nδ

+ t
nδ

]
, δ > 0, t > 0,

and define

σ t
n ! inf{σ : V t

n (σ ) ≤ 1}.

The following result is the first bound of Theorem 4.3 in [10].

Proposition 5 For all t > 0,

P
{
EP ( f̂n,2) > σ t

n

}
≤ e1−t .

In addition to this, we will use the well-known inequality for the expected sup-norm
of the empirical process in terms of bracketing entropy, see Theorem 2.14.2 in [19].
More precisely, we will need the following simplified version of that result.

Lemma 2 Let T be a class of functions from S into [0, 1] such that ∥g∥L2(P) ≤ a for
all g ∈ T . Assume that H[ ](a, T , ∥ · ∥L2(P)) + 1 ≤ a2n. Then,

E sup
g∈T

|Png − Pg| ≤ C̄√
n

a∫

0

(
H[ ](ε, T , ∥ · ∥L2(P)) + 1

)1/2 dε,

where C̄ > 0 is a universal constant.

Proof of Proposition 4 Note that if t > n, then ( t
n )κ/(2κ−1) > 1, and the result holds

trivially with C∗ = 1 since R( f̂n,2) − R( f ∗
P ) ≤ 1. Thus, it is enough to consider the

case t ≤ n.

Let S = X × {0, 1} and P be the distribution of Z = (X, Y ). We will apply
Proposition 5 to the class G ! {g f : g f (x, y) = I{y ̸= f (x)}, f ∈ F}. Then, clearly,
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Pg f = R( f ) and EP (g f ) = R( f ) − R( f ∗
P ) for g f (x, y) = I{y ̸= f (x)}, which implies

that

FP (δ) = {g f : f ∈ F , R( f ) − R( f ∗
P ) ≤ δ}.

We also have ∥g f1 − g f2∥2
L2(P) = ∥ f1 − f2∥L1(µX ). Thus, it follows from Lemma 1

that, for all g f ∈ G,

EP (g f ) ≥ cM∥g f − g f ∗
P
∥2κ

L2(P),

and we get a bound on the L2(P)-diameter of the δ-minimal set FP (δ) : with some
constant c̄1 > 0,

D(δ) ≤ c̄1δ
1/(2κ). (22)

To bound the function φn(δ), we will apply Lemma 2 to the class T = FP (δ) with
a = 1. Note that

H[ ](ε,FP (δ), ∥ · ∥L2(P)) ≤ 2H[ ](ε/2,G, ∥ · ∥L2(P))

≤ 2H[ ](ε2/4,F , ∥ · ∥L1(µX ))

≤ 2H[ ](ε2/(4cµ),F , ∥ · ∥L1(µ)).

Using (18), we easily get from Lemma 2 that, with some constants c̄2, c̄3 > 0,

φn(δ) ≤ c̄2δ
1−ρ
2κ n−1/2, δ ≥ c̄3n− κ

1+ρ ,

which implies that, with some constant c̄4 > 0,

φn(δ) ≤ c̄4 max
(
δ

1−ρ
2κ n−1/2, n− 1

1+ρ
)
, δ > 0.

This and (22) lead to the following bound on the function V t
n (δ):

V t
n (δ) ≤ c̄5

[
δ

1−ρ
2κ −1n−1/2 ∨ δ−1n− 1

1+ρ + δ
1

2κ−1
√

t
n

+ δ−1 t
n

]

that holds with some constant c̄5. Thus, we end up with a bound on σ t
n :

σ t
n ≤ c̄6

[
n− κ

2κ−1+ρ ∨ n− 1
1+ρ ∨

(
t
n

)κ/(2κ−1)

∨ t
n

]
. (23)

Note that, for κ ≥ 1, ρ < 1, and t ≤ n, we have

n−κ/(2κ−1+ρ) ≥ n−1/(1+ρ) and
(

t
n

)κ/(2κ−1)

≥ t
n
.
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Therefore, (23) can be simplified as follows:

σ t
n ≤ c̄7

[
n− κ

2κ−1+ρ +
(

t
n

)κ/(2κ−1)]
,

and the result immediately follows from Proposition 5. ⊓1

Tools for the Minimax Lower Bounds

For two probability measures µ and ν on a measurable space (X ,A), we define the
Kullback-Leibler divergence and the χ2-divergence as follows:

K(µ, ν) !
∫

X

g ln gdν, χ2(µ, ν) !
∫

X

(g − 1)2dν,

if µ is absolutely continuous with respect to ν with Radon-Nikodym derivative g =
dµ
dν , and we set K(µ, ν) ! +∞, χ2(µ, ν) ! +∞ otherwise.

We will use the following auxiliary result.

Lemma 3 Let (X ,A) be a measurable space, and let Ai ∈ A, i ∈ {0, 1, . . . , M},
M ≥ 2, be such that ∀i ̸= j, Ai ∩ A j = ∅. Assume that Qi , i ∈ {0, 1 . . . , M}, are
probability measures on (X ,A) such that

1
M

M∑

j=1

K(Q j , Q0) ≤ χ < ∞.

Then,

p∗ ! max
0≤i≤M

Qi (X \Ai ) ≥ 1
12

min{1, Me−3χ }.

Proof Proposition 2.3 in [17] yields

p∗ ≥ sup
0<τ<1

τM
τM + 1

(
1 + χ + √

χ/2
log τ

)
.

In particular, taking τ ∗ = min(M−1, e−3χ ) and using that
√

6 log M ≥ 2 for M ≥ 2,
we obtain

p∗ ≥ τ ∗M
τ ∗M + 1

(
1 + χ + √

χ/2
log τ ∗

)
≥ 1

12
min{1, Me−3χ }.

⊓1
We now prove a classification setting analog of the lower bound obtained by DeVore

et al. [5] in the regression problem.

123



Constr Approx (2014) 39:421–444 443

Theorem 5 Assume that a class ( of probability distributions P with the corre-
sponding regression functions ηP and Bayes rules f ∗

P (as defined above), contains a
set {Pi }N

i=1 ⊂ (, N ≥ 3, with the following properties: the marginal distribution of
X is µX for all Pi , independently of i , where µX is an arbitrary probability measure,
1/4 ≤ ηPi ≤ 3/4, i = 1, . . . , N, and for any i ̸= j ,

∥ηPi − ηPj ∥L2(µX ) ≤ γ , (24)

∥ f ∗
Pi

− f ∗
Pj

∥L1(µX ) ≥ s (25)

with some γ > 0, s > 0. Then, for any classifier f̂n, we have

max
1≤k≤N

Pk{∥ f̂n − f ∗
Pk

∥L1(µX ) ≥ s/2} ≥ 1
12

min
(
1, (N − 1) exp{−24nγ 2}

)
,

where Pk denotes the product probability measure associated to the i.i.d. n-sample
from Pk.

Proof We apply Lemma 3, where we set Qi = Pi , M = N −1, and define the random
events Ai as follows:

Ai ! {Dn : ∥ f̂n − f ∗
Pi

∥L1(µX ) < s/2}, i = 1, . . . , N .

The events Ai are disjoint because of (25). Thus, the theorem follows from Lemma 3
if we prove that K(Pi , P j ) ≤ 8nγ 2 for all i, j .

Let us evaluateK(Pi , P j ). For eachηPi , the corresponding measure Pi is determined
as follows:

d Pi (x, y) ! (ηPi (x)dδ1(y) + (1 − ηPi (x))dδ0(y))dµX (x),

where dδξ denotes the Dirac measure with unit mass at ξ . Set for brevity ηi ! ηPi .
Fix i and j . We have d Pi (x, y) = g(x, y)d Pj (x, y), where

g(x, 1) = ηi (x)

η j (x)
, g(x, 0) = 1 − ηi (x)

1 − η j (x)
.

Therefore, using the inequalities 1/4 ≤ ηi , η j ≤ 3/4 and (24), we find

χ2(Pi , Pj ) =
∫ {

(ηi (x) − η j (x))2

η j (x)
+ (ηi (x) − η j (x))2

1 − η j (x)

}
dµX (x)

≤ 8∥ηi − η j∥2
L2(µX ) ≤ 8γ 2. (26)

Together with inequality between the Kullback and χ2-divergences, cf. [17], p. 90,
this yields
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K(Pi , P j ) = nK(Pi , Pj ) ≤ nχ2(Pi , Pj ) ≤ 8nγ 2.

⊓1

Comment. The preprint version of this paper was posted on the Arxiv under the
pseudonym N.I. Pentacaput [13]. Then the paper was submitted to “Constructive
Approximation” and was accepted for publication under this pseudonym. However,
it turns out that because of the Publisher rules no paper can be published under a
pseudonym. As a result, we publish it under our real names that we have chosen to
arrange in a random order.
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