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Abstract Consider a standard binary classification problem, in which (X, Y) is a
random couple in X x {0, 1}, and the training data consist of n i.i.d. copies of (X, ).
Given a binary classifier f : X + {0, 1}, the generalization error of f is defined by
R(f) = P{Y # f(X)}. Its minimum R* over all binary classifiers f is called the
Bayes risk and is attained at a Bayes classifier. The performance of any binary classifier
fn based on the training data is characterized by the excess risk R( fn) — R*. We study
Bahadur’s type exponential bounds on the following minimax accuracy confidence
function based on the excess risk:

AC,(M, %) = inf sup P (R(fn) _R*> A) L elo,1],
fn PeM

where the supremum is taken over all distributions P of (X, Y) from a given class
of distributions M and the infimum is over all binary classifiers f, based on the
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training data. We study how this quantity depends on the complexity of the class
of distributions M characterized by exponents of entropies of the class of regres-
sion functions or of the class of Bayes classifiers corresponding to the distributions
from M. We also study its dependence on margin parameters of the classification
problem. In particular, we show that, in the case when X = [0, 1]‘1 and M is the
class of all distributions satisfying the margin condition with exponent @ > 0 and
such that the regression function n belongs to a given Holder class of smoothness
B >0,

_log AG, (M. &) ~ AT, ae [Dn—42+it‘fz/ﬁ,k0]
n
for some constants D, Ao > 0.

Keywords Statistical learning - Classification - Fast rates - Optimal rate
of convergence - Excess risk - Margin condition - Bahadur efficiency

Mathematics Subject Classification 62G08 - 62G07 - 62HO05 - 68T10

1 Introduction
Let (X, A) be a measurable space. We consider a random variable (X, Y) in X’ x {0, 1}

with probability distribution denoted by P. Denote by py the marginal distribution
of X in X and by

nx) £npx) £ PY =1|X =x) = E(Y|X =x)
the conditional probability of Y = 1 given X = x, which s also the regression function
of Y on X. Assume that we have n i.i.d. observations of the pair (X, Y) denoted by
D, = ((Xi, Yi))i=1....n- The aim is to predict the output label Y for any input X in X
from the observations D,,.
We recall some standard facts of classification theory. A prediction rule is a measur-

able function f : X —— {0, 1}. To any prediction rule, we associate the classification
error (probability of misclassification):

R(f) = P(Y # f(X)).
It is well known (see, e.g., Devroye et al. [4]) that

f:Xngl{o’l}R(f) =R(f") = R",

where the prediction rule f*, called the Bayes rule, is defined by
A £ 5 & Iyo=1/2), Y¥x € X,
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where 14 denotes the indicator function of A. The minimal risk R* is called the
Bayes risk. A classifier is a function, fn = fn(X D), measurable with respect
to D, and X with values in {0, 1}, that assigns to the sample D, a prediction rule
fn( D,) : X —> {0, 1}. A key characteristic of fn is its risk E[R( fn ], where

R(fa) 2 P(Y # fu(X)|Dy).

The aim of statistical learning is to construct a class1fier fn such that R( fn) is as close
to R* as possible. The accuracy of a classifier f,, is usually measured by the quantity

E[R( fn) — R*] called the (expected) excess risk of f,,, where the expectatlon E is
taken with respect to the distribution of D,,. We say that the classifier f,, learns with
the convergence rate ¥ (n) if there exists an absolute constant C > 0 such that for any
integer n, E[R(f,) — R*] < Cy(n).

Given a convergence rate, Theorem 7.2 of Devroye et al. [4] shows that no classifier
can learn with this rate for a/l underlying probability distributions P. To achieve some
rates of convergence, we need to restrict the class of possible distributions P. For
instance, Yang [20] provides examples of classifiers learning with a given convergence
rate under complexity assumptions expressed via the smoothness properties of the
regression function 1. Under complexity assumptions alone, no matter how strong
they are, the rates cannot be faster than n=1/2 (cf. Devroye et al. [4]). Nevertheless,
they can approach n~! if we add a control on the behavior of the regression function
n at the level 1/2 (the distance |n(-) — 1/2]| is sometimes called the margin). This
behavior is usually characterized by the following condition, cf. [16]:

Margin condition. The probability distribution P on the space X x {0, 1} satisfies
the margin condition with exponent 0 < a < o0 if there exists Cpy; > 0 such that

px(0 < In(X) —1/2] <1) < Cyt?, YO <1<1. M

Equivalently, one can assume that (1) holds only for ¢ € [0, o] withsome#y € [0, 1).
This would imply (1) for all # € [0, 1) (with a larger value of Cj;). Under the margin
condition, fast rates, that is, rates faster than n~ 12, can be obtained for different
classifiers, cf. Tsybakov [16], Blanchard et al. [2], Bartlett et al. [3], Tsybakov and
van de Geer [18], Koltchinskii [9], Massart and Nédélec [12], Audibert and Tsybakov
[1], Scovel and Steinwart [14], among others.

In this paper, we will study the closeness of R( f,,) to R* in a more refined way.
Our measure of performance is inspired by the Bahadur efficiency of estimation pro-
cedures, but in contrast to the classical Bahadur approach (cf., e.g., [7]), our results
are nonasymptotic.

For aclassifier fn and for atolerance . > 0, define the accuracy confidence function
(or, shortly, the AC-function):

ACw(fus 1) =P (R() = R* 2 2).

Here, [P denotes the probability distribution of the observed sample D,. Note that
AC,(fu, X)) = O0for A > 1since 0 < R(f) < 1 for all classifiers f. Moreover,
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R( fn) — R* < 1/2 for all interesting classifiers ﬁ, Indeed, it makes no sense to
deal with the probabilities of error R( fn) greater than 1/2 (note that R( fn) =1/21s
achieved when fn is the simple random guess classifier). Therefore, without loss of
generality, we can consider only A < 1/2. In fact,we will sometimes use a slightly
stronger restriction A < Ao for some Ao < 1/2 independent of n.

Itis intuitively clear that if the tolerance is low (A under some critical value ), then
the probability AC,,( fn, A) is kept larger than some fixed level. On the opposite, for
A > Ay, the quality of the procedure fn can be characterized by the rate of convergence
of AC,( f,, A) toward zero as n — 00. Observe that evaluating the critical value 1,
yields, as a consequence, bounds and the associated rates for the excess risk ER( fn) —
R*, which is a commonly used measure of performance.

For a class M of probability measures P, we define the minimax AC-function

AC,(M.2) 2 inf sup P (R(fn) —R*> x),
fn€Sy PeM

where S,, is the set of all classifiers. We will consider classes M = M(r, «) defined
by the following conditions:

(a) a margin assumption with exponent «,
(b) a complexity assumption expressed in terms of the rate of decay r > 0 of an
g-entropy.

The main results of this paper can be summarized as follows. Fix r,« > 0 and set

It . ...
My = Dn Tratr where D > 0. Then, we have an upper bound: there exist positive
constants C, c¢ such that, for all classes M = M(r, o) satisfying the above two
conditions,

AC, (M, 1) < Cexp {—cnﬁ%} L V> A )

Furthermore, we prove the corresponding lower bound: there exists a class M satis-
fying the same conditions (a) and (b) such that

AC,(M,A) = po, O0<A <A, XAy, 3)
An <

AC (M, ) > Cexp {—c/nﬁ%} , M <A< 4)

for some positive constants pg, C’, ¢’, and0 < A9 < 1/2 depending only on Cj; and
«. Thus, we quantify the critical level phenomenon discussed above, and we derive the

exact exponential rate exp{—cn)u%} for the minimax AC-function over the critical
level. In particular, this implies the following bounds on the minimax AC-function in
the case when X' = [0, 1]¢ and M is the class of all distributions satisfying the margin
condition with exponent o > 0 and such that the regression function n belongs to a
Holder class of smoothness S > 0 (see Sect. 5):
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4o
ACH(M, 1) = po, 0 < A < Dyn” Tresalp
’ ==t 24a
C exp{—c nklw} < AC,(M, 1) < Cexp {—Cn)\,lJrot}’

__lta
Don™ Tretd/B < ) < Ag.

Here, r = d/B. As an immediate consequence of (2)—(4), we get the minimax rate for
the excess risk:

. A _ 4o
inf sup [ER(fn) — R*] — n~ Tra+r 5)
fnegn PeM

for appropriate classes M, which implies the results previously obtained in Tsybakov
[16] and Audibert and Tsybakov [1].

It is interesting to compare (2)—(4) to the results for the regression problem in a
similar setting (see DeVore et al. [S] and Temlyakov [15]) since there are similarities
and differences. Let us quote these former results: suppose, in a supervised learning
setting, that we observe n i.i.d. observations of the pair (X, Y), but here Y is valued
in [—M, M] instead of {0, 1} and we want to estimate

§(x) =EY|X =x).
Let é,, (x) denote an estimator of £(x), and consider the loss

60 = EllLux)-

Here and in what follows, || - L, (ux), P = 1, denotes the L (e x)-norm with respect
to the measure ;x on X. In this context, AC, (M, A) denotes the quantity

lpf sup P (”éﬂ - %-“Lz(ux) z )”) :
& PeM

It is proved in [5] and [15] that if M = M(®, py) is the set of probability measures
having pnx as marginal distribution and such that £ belongs to the set ®, and the
entropy numbers of ® with respect to Ly (ux) are of order n=" (see [5] and [15]
for details), then there exist A, AF, with A7 =< AF =< n="/0+2") and constants

80, C1, c1, Ca, cp such that

AC,(M(O, ux),A) =8, VA=A, (6)

Cre™ " < AC,(M(©, jux), h) < Coe™ ™| Vi =], (7

These inequalities accurately describe the behavior of the minimax AC-function for
classes M(®, wy) with any marginal distribution p x . The same inequalities hold for

the following quantity:

sup AC,(M(®, ux), A).
1x
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Our results for the classification problem are somewhat weaker than the above results
for the regression problem. In Sects. 3 and 4, we prove the upper bounds for the cor-
responding classes in the case of any marginal distribution @y such that the margin
assumption holds. This is analogous to what was obtained for the regression problem.
However, in Sect. 5, we only prove the matching lower bounds for a special mar-
ginal distribution px. Thus, we obtain an accurate description of the behavior of the
supremum over marginal distributions sup,, AC, (M, 1) and not of the individual
AC-functions for each marginal distribution px.

The similarity of the results in the two different settings is that there is a regime
of exponential concentration, which holds for any A greater than a critical level. This
critical level, which is also the minimax rate, depends on the complexity of the class
characterized by r. We can also observe that the exponents in the bounds (% in
classification, 2 in regression) do not depend on the complexity parameter r.

The differences lie in two facts, since the margin condition is entering the game

. .- . _ e .
at two levels. The first one is the critical value itself, n~ 2+« . Note that here o is
appearing in a favorable way (the larger it is, the better the rate). This is intuitively
clear since larger o corresponds to sharper decision boundaries.

The second place where a difference occurs is the rate in the exponent ATre com-
pared to A2 in a regression setting. The margin condition influences the rate %ﬁ, and
this time again in a favorable way with respect to « (the rate improves as o grows).
For @ — 0, that is, when there is no margin condition, we approach the same rate as

in regression.

2 Properties Related to the Margin Condition

In this section, we discuss some facts related to the margin condition. We first recall
that it can be equivalently defined in the following way, cf. [16]. Let Go = {x : n(x) =
1/2} denote the decision boundary.

Proposition 1 Fix 0 < o < co. A probability measure P satisfies the margin condi-
tion (1) if there exists a positive constant cyy such that, for any Borel set G C X,

/ 20() — 1x (dx) = cnnx (G, ®)
G

where »x = (1 + a) /a. Conversely, if the margin condition (1) holds, then there exists
a positive constant ¢y such that, for any Borel set G C X,

/|2TI(X) — lpx(dx) = eypx (G\Go)™. ©))
G

Proof We first prove (9). Let G be given. Clearly, it suffices to assume that
ux(G\Gp) > 0. Choose ¢ from the equation ux(G\Gg) = 2Cpyt%, and set
A = {x: |n(x) — 1/2] < t}. Then, by the margin condition (1),
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ux(G\A) > ux(G\Go) — ux(A\Go) > ux(G\Go) — Cyt* = Cpt®.

Therefore,

/ 20(x) — 1ux(dx) = 2 / e (dx)
G G\A
> 20yt = 2Cu) "V ux (G\Go)' e,

Conversely, assume that for some s > 1, inequality (8) holds for any Borel set G.
Take G = {x : 0 < |n(x) — 1/2| < t}. Then, (8) yields

/5
ux(0 < n(X) —1/2[ <1) < 6;41 / 12n(x) — Tux(dx)
O<|n(x)—1/2|=t

< (03 1 1x (0 < In(X) — 1721 < )%,

Solving this inequality with respect to ux(0 < |n(X) — 1/2| < t), we obtain the
margin condition (1). O

Remark 1 In what follows, we will distinguish between the margin condition (1) and
the margin condition (8) with sz > 1. If s = 1, then (8) still makes sense, but it
cannot be directly linked to margin condition (1) in terms of «; formally, one would
set o« = 400, but this lacks rigor. As suggested in [12], it is more appropriate to define
the analog of (1) for > = 1 in the form ux (0 < |n(X) — 1/2| < o) = 0, which
means that the regression function n has a jump at the decision boundary. The case
» = 1 will be treated separately in Sect. 4.

We now state an easy consequence of Proposition 1. For any prediction rule f, set
Ipp = Folmeryoy + flg=1/2).

Lemma 1 If the probability measure P satisfies the margin condition (1), then for
any prediction rule f,

14a
R(f) = R* = QCw) ™I f = f5 1% - (10)

Analogously, if the probability measure P satisfies the margin condition (8) with some
» > 1, then for any prediction rule f,

R(f) = R* = eullf = Fol 7 up)- (11)

Proof Note that, for any prediction rule f,

R(f) — R* = / 20() — 1px (dx) = / 20(x) — 1x(dx),
Dp(f) Dip(f)
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where Dp(f) = {x : fH(x) # f(x)}and D (f) £ {x : Ip s(x) # f(x)}. Thus,
(10) follows from (9), the relations D', (f)\Go = D/ (f), and

ux(Dp () = I1f = fp Ly

Similar arguments for D p (f) together with (8) imply (11). O
Finally, we have the following property:

Proposition 2 For any Borel function n : X — [0, 1] and any distribution P of
(X, Y) satisfying the margin condition (8) with some » > 1, we have

Ifi = FollLige < 2CmIi = nplT )

where f5(x) = I{5x)>1/2) and o = (1 — %)_1.

Proof By Lemma 5.1 in [1],

R(fp) = R* <2Culii—npl[™%, ) (12)
This and Lemma 1 yield the result. O

Corollary 1 Let P be a class of joint distributions of (X, Y) satisfying the margin
condition (8) with some » > 1 and all having the same marginal 1x. Then, for any
pair P, P € P with the corresponding regression functions 1, ij and decision rules
Tn() = Iye=172), J7(X) = Io=1/23 we have

1z = Full oo < 2Cu i =0l

3 Upper Bound Under Complexity Assumption on the Regression Function

In this section, we prove an upper bound of the form (2) for a class of probability
distributions P, for which the complexity assumption (b) (cf. the introduction) is
expressed in terms of the entropy of the class of underlying regression functions 7p.
For g : X — R, define the sup-norm ||glco = sup,cy [g(x)I.
Fix some positive constants r, o, Cps, B. Let M(r, o) = M(r, o, Cpy, B) be any
set of joint distributions P of (X, ) satisfying the following two conditions:

(1) The margin condition (1) with exponent a and constant C ;.
(i1) The regression function n = np belongs to a known class of functions U, which
admits the e-entropy bound

H(e, U, || - lloc) < Be™", Ye > 0. (13)
Here, the ¢-entropy H(e,U, || - |lco) is defined as the natural logarithm of the
minimal number of e-balls in the || - ||co norm needed to cover U.
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For any prediction rule f, we define the empirical risk
1 n
Ru(f) =~ D lipx#r)-
i=1

We consider the classifier fn,l(x) = I{3,(x)>1/2), Where
My = argmin,, ¢ nr. R (fy)-

Here, f,y(x) = Iy o=1/2) and N, denotes a minimal g-net on I/ in the || - || oo nOrm;
i.e., NV is the minimal subset of I/ such that the union of &-balls in the || - || nOrm
centered at the elements of A, covers U.

S
Theorem 1 Letr, o, Cyy, B be finite positive constants. Set ¢ = ¢, = n~ 2te+r, Then,
there exist positive constants ¢ and ¢’ depending only on r, a, Cypy, B such that

sup  PR(fy1) — R(f§) = 4} < 2expl—cni )
PeM(r,a)

;o lta
for & > c'n” 2Hatr,
This theorem has an immediate consequence in terms of AC-functions.

Corollary 2 There existd > 0, ¢ > 0 such that for A,, = dnjgir , we have

2+a

AC,(M(r,), 1) <2 >,

Proof of Theorem 1 We follow the argument of Theorem 4.2 in [1] with suitable mod-
ifications. Set d(n) £ R(fy) — R(f}) = R(fy) — R(f;’n,), where, for brevity,

fi 2 f5 . .Letij € N besuch that |77 — np | s
P.n P,fn/
(12) above, we get

< e.Using Lemma 5.1 in [1], cf.

d(i)) = R(f7) — R* <2Cyllii — nplIid® <2Cue'™™ < 1/2 (14)

14+a .
for any A > 4Cyn~ e+, Define a set of functions G, = {n’ € N; : d(n’) > A}, and
introduce the centered empirical increments

Z,(n') = Ra(fyy) = Ru(fp ) — (R(fyy) = R(fp ;)
Then,

P(R(fu1) — R(f3) = 1) <P@n' € Ge : Ru(fyy) — Ru(f) < 0)

< Z P (') + Z,(n") — d(i) — Z,(i) < 0).
n'eGe
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Note that for any 1’ € G, we have
dn'y —d@ =dn')/2 = 1/2.

Using this remark and (13), we find

PR(fu) = R(fH) 2 1) = D P(Z,(0) < —d()/4) + B(Z,() = 1/4)
n'€Ge
< exp(Be™") max P(Z,(n') < ~d(')/4)
N €Ye

+ P(Za() = A/4). 15)

Now, Z,(n') = L 3" | &), where

n
&) = iy cxomry = iy xosr) = E(’{mxoﬂi} - I{f;,”,<x,~>ﬂ,~})-
Clearly, & (n")| < 2, and using (10) of Lemma 1,

2
&0 = E([1y oo — Ly o)

= lfy = Sl
= [ecm = rfy) - R
= (2Cy) T (d () 5.

a

I+a

Therefore, we can apply Bernstein’s inequality to get

nd*(n')/16 )
2((2C ) (d(n)) 57 + d(n)/3)

( nd?(y') )
E exp - a_ k]
cidn)) T+

where ¢} = 2((2CM)ﬁ + 1/3) and we used that d(") < d%(n’) since d(n’) < 1.
Thus, for any " € G, we obtain

P(Z,(n") < =d(n")/4) < exp (—

/ / 2ta /
P(Z,01) < —d()/4) < exp (-nr T /ef)
As a consequence,
exp(Be™") magx P(Z,(n) < —d(n)/4) < exp (Bn T — nk%/ci)
n'€Ge

< exp ( _ nﬁ%'/zcg), (16)
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where we used that A > ¢'n”~ T for some large enough ¢’ > 0. Another application
of Bernstein’s inequality and (14) yields

2
P(Z, () > A/4) < exp(— /16 )
2(2Cy) ™ (d() T +4/3)

nA?
<exp{ —————— ).
C/l()Lm + )

For A < 1, the last inequality implies

24a
P(Z,(7) > 1/4) < GXp(_”)‘H“ )

/
2¢;

This, together with (15) and (16), yields result of the theorem for A < 1. If A > 1, it
holds trivially since d(n") < 1 for all n’.

4 Upper Bound Under Complexity Assumption on the Bayes Classifier

This section provides a result analogous to that of Sect. 3 when the complexity assump-
tion (b) (cf. the introduction) is expressed in terms of the entropy of the class of
underlying Bayes classifiers f} rather than of that of regression functions np.

First, we introduce some definitions. Let F be a class of measurable functions from
a measurable space (S, Ag, n) into [0, 1]. Here, w is a o -finite measure.

Forl <g <ooande > 0, let Nyj(e, F, || - L, (u)) denote the L, (u)-bracketing
numbers of F. That is, Ny j(¢, F, || - [z, () 1s the minimal number N of functional
brackets

U7 12 7 =g = S =10,
such that
N
FolUuy S and I1ff = filL,u =6 j=1....N.
Jj=1

The bracketing e-entropy of F in the || - ||z, (,)-norm is defined by
Hiye, Foll - Ly go) = log Npje, Foll - g gn)-
We will consider a class of probability distributions P of (X, Y) characterized
by the complexity of the corresponding Bayes classifiers. Specifically, fix some p €

0,1),a>0,Cy >0,c, >0, B > 0,and let M*(p, «) = M*(p, o, Cypr, cpu, B')
be any set of joint distributions P of (X, Y) satisfying the following conditions:
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(1) The marginal distribution uyx of X is absolutely continuous with respect to a
o-finite measure p on (X, A), and (dpx /du)(x) < ¢, for p-almostall x € X.
(ii) The margin condition (8) with exponent » = (1 + «)/a, 0 < @ < 00, and
constant cyy is satisfied.
(iii) The Bayes classifier f} belongs to a known class of prediction rules F satisfying
the bracketing entropy bound

Hiy(e, Foll - ) < B'e™”, Ve > 0. (17
We consider a classifier fn,z that minimizes the empirical risk over the class F :
fa2 2 argmin ;e 2Ry (f).

The main result of this section is that for fn’z, we have the following exponential upper
bound.

Theorem 2 Let p € (0, 1), and let o, cpy, cpy, B’ be positive constants. Then, there
exist positive constants ¢ and ¢’ depending only on p, «, cyy, Cu B’ such that

sup ]P{R(fn,z) —R(f) = A} < eexp {—cnﬁ%}
PeM*(p,a)

_lde
for & > ¢'n” T+,

Furthermore, the same classifier fn,z satisfies a similar exponential bound under
the margin condition (8) with »» = 1. To consider this case, we define the class of
distributions M*(p, 0c0) = M*(p, cum, ¢, B') as being a set of joint distributions P
of (X, Y) satisfying the same assumptions as M*(p, @), 0 < @ < oo, with the only
difference being that assumption (ii) is replaced by

(ii") The margin condition (8) with exponent s = 1 and constant cpy > 0 is satisfied.

The upper bound for this class is as follows.

Theorem 3 Let p € (0, 1), and let ¢y, ¢y, B’ be positive constants. Then there exist
positive constants ¢ and ¢’ depending only on p, ¢y, ¢, B' such that

sup  P{R(fn2) — R(f}) = A} < eexp{—cnh}
PeM*(p,00)

.
for x> c'n” T,

The proofs of Theorems 2 and 3 are given in the appendix. Note that this proof can
be deduced in several different ways from well-known general excess risk bounds in
learning theory (see, e.g., Massart [11] or Koltchinskii [10] and references therein).
The version of the proof given below follows [10].
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Inspection of the proof shows that Theorems 2 and 3 remain valid if we drop
condition (i) and replace (iii) by the following more general condition:

(iii") The Bayes classifier [} belongs to a known class of prediction rules F satisfying
the bracketing entropy bound

Hiple, Foll - o)) < B'e™?, Ve > 0.

Condition (iii’) is, in fact, an assumption on both F and the class of possible marginal
densities ©x. The reason why we have introduced conditions (i) and (iii) instead of
(ii1’) is that they are easily interpretable. Indeed, in this way, we decouple assumptions
on F and assumptions on /t x . The case that is even easier corresponds to considering a
subclass of M*(p, «) composed of measures P € M*(p, o) with the same marginal
wx. Then, again we only need to assume (ii) and (iii’), but now (iii’) should hold for
one fixed measure uy and not simultaneously for a set of possible marginal measures.

We finish this section with a comparison of Theorems 1 and 2. They differ in
imposing entropy assumptions on different objects, regression function np and Bayes
classifier f},respectively. Also, in Theorem 1, the complexity is measured by the usual
entropy for the sup-norm, whereas in Theorem 2, it is done in terms of the bracketing
entropy for the Li-norm. Note that for many classes, the bracketing and the usual
e-entropies behave similarly, so that the relationship between the corresponding rates
of decay r in (13) and p in (18) is only determined by the relationship between the
sup-norm of the regression function 7 and the L ;-norm on the induced Bayes classifier.
In this respect, Corollary 1 is insightful, suggesting the correspondence

-
p=—.
o

Finally, note that the ranges of the complexity parameters as well as the assumptions
on the measure py in Theorems 1 and 2 are somewhat different. Namely, Theorem 1
holds under no additional assumption on  x except for the margin condition and covers
classes with high complexity (all » > 0 are allowed). Theorem 2 needs a relatively
mild additional assumption (i) on pux and restricts the complexity by the condition
p < 1. The classifier fn,z of Theorem 2 does not require the knowledge of the margin
parameter «. Thus, fn,z is adaptive to the margin parameter. On the other hand, the
classifier f,,,l of Theorem 1 does require the knowledge of o which is involved in the
definition of parameter ¢ of the net NV,. Note that for classes F of high complexity
(with p > 1), the empirical risk minimization over the whole class F usually does
not provide optimal convergence rates. In such cases, some form of regularization is
needed. It could be based on penalized empirical risk minimization (see, e.g., [10])
over proper sieves of subclasses of F (for instance, sieves of e-nets for F).

5 Minimax Lower Bounds

In this section, we will assume that the regression function 7 belongs to a Holder class
defined as follows.
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For alzly multi-index s = (s1,...,8¢) and any x = (xq,...,Xq) € R4, we define
s S, A
Is| = >0 si, st=s1!.. 54!, x* =x}' ...jcdi and ||x] = (X12 + - +x3)1/2. Let
) } oS
D? denote the differential operator D* £ %.
Xl Xd

For B > 0, let | 8] be the maximal integer that is strictly less than 8. For any
x € [0, 1]1¢ and any | 8] times continuously differentiable real valued function g on
[0, 11, we denote by g, its Taylor polynomial of degree | 8] at point x € [0, 1]%:

n A (x/ —x)° s
gx(x) = |S§_:ﬂj — D’ g(x).

Let 8 > 0, L > 0. The Holder class of functions (8, L, [0, l]d) is defined as
the set of all functions g : [0, 1] — R that are | 8] times continuously differentiable
and satisfy, for any x, y € [0, l]d , the inequality

lg(x') — gx (x| < Llx" — x|’
Fixa > 0,8 > 0, L > 0, and a probability distribution px on [0, 11. Denote by
M’ (iux, o, B) the class of all joint distributions P of (X, Y) such that

(i) The marginal distribution of X is uy;
(i1) The margin condition (1) is satisfied with some constant Cp; > 0;
(iii) The regression function n = np belongs to the Hélder class (B, L, [0, 119).

Theorem 4 There exist amarginal distribution % and positive constants C, Cj, ¢,

dy ,dj, A\ depending only on a, B, L, d, and Cy such that for any classifier fur

sip P{R(f) - Rz} = ¢
PeM' (uy.a.B)

I
forany 0 < A < din~ Zetd/F and

sup P{R(fn)—R* zk} ECéexp{—c/n)L%}
PeM (Wy.a.p)

for any déniﬂ‘lxz/ﬂ <A <A
The proof of Theorem 4 including the explicit form of the marginal distribution %
is given in Sect. 6.

Note that there exists a constant B > 0 such that the set of regression functions
U={np, Pe M (u%,a, B)}satisfies the entropy bound

H(e, U, || - loo) < Be™", Ve >0, (18)
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where r = d/f.Indeed, (18) holds sinceld = {n € (B, L, [0, 119 :0< nix) <1},
and

H(e, DB, L, [0, 119), || - o) < Be=¥/E,

cf. Kolmogorov and Tikhomirov [8]. Thus, for the choice of /ﬁ;( described in Sect. 6,
the class of probability distributions M'(u%, «, B) is a particular case of M(r, o)
(with r = d/p) defined in Sect. 3. Theorem 4 shows that, for this particular case, it is
impossible to obtain faster rates for AC-functions than those established in Theorem 1.
In this sense, Theorem 4 provides a lower bound that matches the upper bound of
Theorem 1.

6 Proof of Theorem 4

The proof of Theorem 4 will be divided into steps. First, we construct a finite family
P1, ..., Py of probability distributions of the pair (X, Y). Second, we apply the gen-
eral tools for minimax lower bounds (cf. the appendix) to prove a minimax lower bound
on this finite family. Finally, we choose the parameters of the family Pj, ..., Py in
order to embed it into the class M’ (pL’;(, o, B), which leads to the result of Theorem 4.

6.1 Construction of a Finite Family of Probability Measures

We proceed here similarly to [1]. Let 0 = (o7q, ..., 0p) be a binary vector of length
b with elements o; € {—1,1}. Let ¢ be an infinitely differentiable function with
compact support in R? such that 0 < ¢(x) < ¢ for some constant ¢ € (0, 1/2).
Consider functions ¢, ..., ¢p On R4 satisfying

(a) pjisashiftof ¢, j =1,...,b;
(b) the supports A ; of functions ¢; are disjoint.

Denote by X (b) the set of all binary vectors o of length b. For every o € X(b),
define

b
G (X) £ D 0j0j(x), no(x) £ (14 65(x))/2,
j=1

Consider the following class ® of regression functions:

® = (15,0 € T(b)}.
In what follows, we assume without loss of generality that b > 16. By the Varshamov-
Gilbert lemma (cf. [17], p. 104), there is a subset S of X (b) such that cardinality

|S| > 2b/8  and for any two different elements o, and o’ from S, we have

llo —o’lle, = b/4.
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Let X =[0,1]¢, ¢ € N,and b £ ¢?. Let ¥ be a nonnegative infinitely differentiable

function with support (0, 1)¢ such that < ¢ < 1/2 and f Y (x)dx > 0. For
0,1)4

given parameters § € (0, 1) (small parameter) and « € [0, 00), define

p(x) 2 810y (gx).

Foravectork = (k1,...,kq), kj €{0,...,g—1}, j=1,...,d, define a grid point
xké(xlf,...,xs), xf:kj/q, j=1,...,d.

We now consider b functions @i (x) = ¢(x — x*) and the corresponding class ® of
regression functions defined above. We set N = |S| and consider a subset ®' C ©:

© 2 (1o, 0 € S} = {mi}iL;.
Now, recalling that the regression function n(X) is the conditional probability of

Y =1 given X, we define the joint probability measures P,, o € S, of (X, Y) (these
measures will be also denoted by P;,i =1,...,N):

Py(¥ =1,X € A) =/no(x)ﬂx(dx)
A

for any Borel set A, where the marginal distribution j1x = % is specified as follows.
First, for all x such that

1/(4q) < xj — x5 <3/(4g), j=1,....d,
the distribution u% has a density w.r.t. the Lebesgue measure

X (v 2 - =2'bw,
dx Leb(B(0, 1/(4q))

where B(x, r) is the £o-ball of radius r centered at x, Leb(-) denotes the Lebesgue
measure, and w = C8%/ (179 /p for some C € (0, 1]. Second, we set duy(x)/dx =0
for all other x such that at least one of n;(x) is not 1/2. Finally, on the comple-
mentary set Ag C [0, 119 where all ni(x) are equal to 1/2, we set d,u*X(x)/dx £
(1 —bw)/Leb(Ayp) to ensure that fRd duy (x) = 1 (we assume that the support of the
function v belongs to the set [y, | — y] for a small y > 0; then, it is easy to see that
Leb(Ag) > 0).

We now impose an extra restriction on ¢ and prove that under this restriction, the
measures P; satisfy the margin condition with parameter «. Assume that ¥ (x) = ¢ >
0 for x satisfying the inequalities 1/4 < x; <3/4, j =1,...,d, and ¥ (x) < c; for
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other x. Here, ¢y € (0, 1/2). Then,

b
Wy < no(X) =172/ =0y =px [0 <D ojej(X)| <2
j=1

= b (0 < ¢(X) < 21),

because the supports A ; of functions ¢; are disjoint. Then, using the definition ¢ (x) =
s+ (gx), we obtain that

w0 < o(X) <2t) =w if 8"/ <2
and 1% (0 < ¢(X) < 2t) = 0 for all other ¢ > 0. Therefore,
by (0 < (X) <2t) < C8MHO L sjtiay <oy < CQ21/c)*, > 0.

Thus, all P; satisfy the margin condition with parameter o and constant Cy; =
C(2/c2)*.

Minimax lower bound for the finite set of measures Py, ..., Py. Let us check the
assumptions of Theorem 5 in the appendix for the set of probability measures
P1, ..., Py defined above. Since 0 < ¢ < 1/2, we have 1/4 < n;(x) < 3/4 for
all§ € (0,1) and all x € (0, 1)d. Next, for any o, 0’ € S, we have

2 2 2 1
Inp, — nPJ’||L2(U~§) = b||§0||Loo(M»§()w =< Tl _HX),

and for o # ¢/, in view of (19) and (19),

b
* * _ d
ILf5, = 15 Mgy = 221{0,.#;} / 2%bw dx
j=1 B(0,1/(49))

= |lo — o'llgw > ¢ 8%/ 1T,

where ¢; = C/4. Thus, the assumptions of Theorem 5 in the appendix are satisfied
with N = |S| > 26/8 > 26/16 | and

p? = caGro/te o s/t (19)

Therefore, we get the following result:

Proposition3 Fix e > 0, § € (0,1), and g € N such that b = qd > 16. Let
Py, ..., Py be the family of probability measures defined above. Then, for any clas-
sifier f,, we have
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A Cota I . b 2a
12{%21\,1?% [”fn_ Ty = T] = 75 min (1, 276 exp {—63n8 Ha })

(20)

where C € (0, 1) is the constant used in the construction of Py, ..., Py, and c3 > 0
is a constant depending only on C. Furthermore, for 0 < A < Ao,

A 1 b 24a
— * J— 1 16 — o
max Bi(R(f,) = R(f}) = 4} = o min (1, 21 exp{ canTE }) Q1)

where hg = 16~ 0FD/2Cer and ¢y > 0 is a constant depending only on C, ¢ and «.

Proof Bound (20) follows from Theorem 5 and (19). To prove (21), we combine (20)
with Lemma 1, set A = X¢d, and use that Cyy = C(2/c2)® by the construction of
Py, ..., Py.

Minimax lower bound on the class /\/l’(,u*X, o, B). We now prove Theorem 4
using a particular instance of the constructions introduced above in this section.

Set g = (cy?fm], where ¢5 > 0 is a constant and [x] denotes the minimal
integer greater than x. It is easy to see that if cs5 is small enough, then we have
¢ € (B, L,[0,1]%), implying that n, € (B, L, [0, 11¢) for all & € S. Choose
such a small cs. It is also easy to see that one can always choose constants C € (0, 1)
and ¢ € (0, 1/2) in the construction of Sect. 6 in such a way that C(2/c2)* = Cyy,
which is needed to satisfy the margin condition (ii). Then, for any fixed § € (0, 1),
the finite family of probability distributions {Pj, ..., Py} constructed above (and
depending on §) belongs to M'(u%, «, B). To indicate this dependence on & explic-
itly, denote this family by P, , where A = Ao8 and X is defined in Proposition 3. Since
Pr C M (%, a, B), for any A < Ao, we can write

sup P{R(f) — R* > A} > max P{R(f,) — R* > A}
PeM (1% .a.p) PP,

and then estimate the right-hand side of this inequality using (21) of Proposition 3.
Note that in Proposition 3 we have the assumption g¢ > 16, which is satisfied if
8 < 8o, where Jp is a small enough constant depending only on the constants in the
definition of the class M’ (1%, o, B). Thus, we obtain

A 1 o
sup P{R(f,) — R* > A} > — min (1,2b/léexp{ —cmkﬁﬁ})
PeM (1% .a.p) 12

. __d_ 2ta
> T min (1, exp {c6k I+0f — cynA T+e })

forall 0 < A < X, where Aj; > 0 and ¢ > 0 depend only on the constants in the
definition of the class M'(u%, «, B). This immediately implies the theorem. O
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Appendix

Proof of Theorems 2 and 3. We deduce Theorems 2 and 3 from the following fact that
we state here as a proposition.

Proposition 4 Let either 0 < o < 00 and » = lfT“ ora = 0o and » = 1. Then,
there exists a constant C, > 0 such that, for allt > 0,

V4

sup P[R(fn,z) — R = . [n‘w”w v (5)%“ <o,

PeM*(p,a) n

It is easy to see that Theorem 2 follows from this proposition by taking t = cnA T+«
o lie .
with A > ¢’n~ 2+ for some constants ¢, ¢’ > 0, and using that » = &T“ To

obtain Theorem 3, we take ¢t = cnA with A > ¢’ n_ﬁ.

Proposition 4 will be derived from a general excess risk bound in abstract empirical
risk minimization ([10], Theorem 4.3). We will state this result here for completeness.
To this end, we need to introduce some notation. Let G be a class of measurable
functions from a probability space (S, Ag, P) into [0, 1], and let Zy, ..., Z, be i.i.d.
copies of an observation Z sampled from P. For any probability measure P and any
g € G, introduce the following notation for the expectation:

Pg = /gdP.

S

Denote by P, the empirical measure based on (Zy, ..., Z,), and consider the mini-
mizer of the empirical risk

on 2 argming g Png.
For a function g € G, define the excess risk
Ep(g) £ Pg — inf Pg’.
e
The set
Fp®) £{geG: Ep(g) <6}

is called the §-minimal set. The size of such a set will be controlled in terms of its
L, (P)-diameter

D@) = sup  llg— g llLyp
g.8'€Fp(d)
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and also in terms of the following “localized empirical complexity’:

on(®) ZE  sup |(P,—P)(g—g)l.
8.8'€Fp(5)

We will use these complexity measures to construct an upper confidence bound on the
excess risk Ep (fy.2). For a function ¢ : Ry +— Ry, define

¥’ (8) £ sup m.
o>45
Let
A t t
Vn’(é) = 4|:¢f,(8) +4/ (D2 (8) — + —i| §>0,t>0,
né  né
and define

ol £inf{o : V(o) < 1}.
The following result is the first bound of Theorem 4.3 in [10].

Proposition 5 Forallt > 0,
Pler(fio) > op) ',

In addition to this, we will use the well-known inequality for the expected sup-norm
of the empirical process in terms of bracketing entropy, see Theorem 2.14.2 in [19].
More precisely, we will need the following simplified version of that result.

Lemma 2 Let T be a class of functions from S into [0, 1] such that ||g||L,py < a for
all g € T. Assume that H1(a, T, || - | L,p)) + 1 < a*n. Then,

- a
C 1/2
E sup |P,g — Pg| < —/ (Hiye. T, - llapy) + 1) 2 de,
geT \/EO

where C > 0 is a universal constant.

Proof of Proposition 4 Note thatif > n, then (£)*/?**=1) > 1 and the result holds

trivially with C, = 1 since R(fn,z) — R(fp) < 1. Thus, it is enough to consider the
caset < n.

Let § = X x {0, 1} and P be the distribution of Z = (X, Y). We will apply
Proposition 5 to the class G = {gr: gr(x,y) = Iiyxfro0y, f € F}. Then, clearly,
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Pgy = R(f)and Ep(gf) = R(f) — R(f}) for g7 (x, ¥) = Iy s () which implies
that

Fp@) ={gs: f€F, R(f)— R(fp) =8}

We also have g — gf2||%2(P) = |lf1i — f2llL,(ux)- Thus, it follows from Lemma 1
that, forall g7 € G,

Ep(gr) = cmllgsr — grsi5p)

and we get a bound on the L,(P)-diameter of the §-minimal set Fp(§) : with some
constant ¢; > 0,

D(8) < ¢804, (22)

To bound the function ¢,(8), we will apply Lemma 2 to the class 7 = Fp(§) with
a = 1. Note that

Hiy(e, Fp@), || - lzocpy) < 2Hi1(e/2, G, || - lLocp))
<2H (& /4 F. | Lyuy)
< 2H; (€% /(4cp), Fo ll - Ly )

Using (18), we easily get from Lemma 2 that, with some constants ¢, ¢3 > 0,
_ ol A
$n(8) < 287~ 12§ > G3n” T,
which implies that, with some constant ¢4 > 0,
_ 1-p —-1/2 I
bn(8) < &4 max (3 n=12 1+p), 5> 0.

This and (22) lead to the following bound on the function V/(§):

Vi®) <& [a‘»‘élnm vanh ot L 515}
n

n

that holds with some constant ¢5. Thus, we end up with a bound on a,’l :

R N T 4 A Sl
0, <Ce|ln PHrvn v . v; . (23)

Note that, for 2 > 1, p < 1, and ¢ < n, we have

>

S|~

= HICH-4p) 5 =1/40) g (
n

/ )%/(2%—1)
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Therefore, (23) can be simplified as follows:

R £\ 7/ @-1)
Oy <c7|n —lHr + ; ,

and the result immediately follows from Proposition 5. O

Tools for the Minimax Lower Bounds

For two probability measures p and v on a measurable space (X, A), we define the
Kullback-Leibler divergence and the x 2-divergence as follows:

K. v>é/glngdv, . v>é/(g—1>2dv,
X X

if o is absolutely continuous with respect to v with Radon-Nikodym derivative g =
Z—’:, and we set KC(u, v) £ +oo, x2(u, v) £ +oo otherwise.
We will use the following auxiliary result.

Lemma 3 Let (X, A) be a measurable space, and let A; € A, i € {0,1,..., M},
M > 2, be such that Vi # j, A; N Aj = . Assume that Q;, 1 € {0,1..., M}, are
probability measures on (X, A) such that

1 M
7 2. K(Q;, Qo) = x < o0,
j=1

Then,

1
4 . . mi —3x
Dx 022\4 Qi(X\A)) > B min{l, Me 7 X}.

Proof Proposition 2.3 in [17] yields

> su
Pe= 0<rgl ™ 41

(1+—X+VX/2).
logt

In particular, taking * = min(M !, e=3X) and using that \/6Tog M > 2 for M > 2,
we obtain

Px =

*M (1+ x+x/2

1
> — min{l, Me 3%},
M+ 1 log t* 12

O

We now prove a classification setting analog of the lower bound obtained by DeVore
et al. [5] in the regression problem.
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Theorem 5 Assume that a class © of probability distributions P with the corre-
sponding regression functions np and Bayes rules f} (as defined above), contains a
set {Pi},N: | € ®, N > 3, with the following properties: the marginal distribution of
X is ux for all P;, independently of i, where x is an arbitrary probability measure,
1/4<np <3/4,i=1,...,N, and foranyi # j,

Inp, = npillLyux) <V, (24)
”f;z - f;l ”L](/L)() N (25)

with some y > 0, s > 0. Then, for any classifier fn we have
N [
max Pelll o = £ 4gu = $/2} 2 5 min (1, (N = 1) exp{—24ny2}),

where P denotes the product probability measure associated to the i.i.d. n-sample
from Py.

Proof We apply Lemma 3, where we set Q; = IP;, M = N — 1, and define the random
events A; as follows:

Ai & Dy 1 fa = follLiuy < /2% i=1,....N.

The events A; are disjoint because of (25). Thus, the theorem follows from Lemma 3
if we prove that C(P;, IP;) < Sn)/2 for all i, j.

Letusevaluate K(IP;, ;). Foreach 7 p,, the corresponding measure P; is determined
as follows:

dP;(x,y) £ (np, ()81 (y) + (1 = np, ()d8o(y)dpax (x),

where ddg denotes the Dirac measure with unit mass at . Set for brevity »; & np;.
Fix i and j. We have d P; (x, y) = g(x, y)d Pj(x, y), where

7; (x) I —n;i(x)

)= , ,0) = .
glx, ) g(x,0) =00

Therefore, using the inequalities 1/4 < n;, n; < 3/4 and (24), we find

. . 2 . . 2
P Py = /Im,(x) ! ) =2
n;(x) 1 —n;(x)
< 8l — njll7 0y < 8V (26)

Together with inequality between the Kullback and y2-divergences, cf. [17], p. 90,
this yields
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K(P;, ;) = nK(P;, Pj) < nx*(P;, P;) < 8ny?.
O

Comment. The preprint version of this paper was posted on the Arxiv under the
pseudonym N.I. Pentacaput [13]. Then the paper was submitted to “Constructive
Approximation” and was accepted for publication under this pseudonym. However,
it turns out that because of the Publisher rules no paper can be published under a
pseudonym. As a result, we publish it under our real names that we have chosen to
arrange in a random order.
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