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Abstract

We consider the linear regression model with observation error in the design. In this
setting, we allow the number of covariates to be much larger than the sample size.
Several new estimation methods have been recently introduced for this model. Indeed,
the standard Lasso estimator or Dantzig selector turn out to become unreliable when
only noisy regressors are available, which is quite common in practice. We show in
this work that under suitable sparsity assumptions, the procedure introduced in [14]
is almost optimal in a minimax sense and, despite non-convexities, can be efficiently
computed by a single linear programming problem. Furthermore, we provide an esti-
mator attaining the minimax efficiency bound. This estimator is written as a second
order cone programming minimisation problem which can be solved numerically in
polynomial time.

1 Introduction

We consider the regression model with observation error in the design:

y = Xθ∗ + ξ, (1)

Z = X +W. (2)

Here the random vector y ∈ Rn and the random n× p matrix Z are observed, the n× p
matrix X is unknown, W is an n × p random noise matrix, ξ ∈ Rn is a random noise
vector, and θ∗ is a vector of unknown parameters to be estimated. For example, the
case where the entries of matrix X are missing at random can be reduced to this model.
Such linear regressions with errors in both variables have been widely investigated in the
literature, see for example [3, 6, 9]. Our work is different in that we consider the setting
where the dimension p can be much larger than the sample size n, and θ∗ is sparse.

It has been shown in [13] that the presence of observation noise has severe consequences
on the usual estimation procedures in the high-dimensional setting. In particular, the
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Lasso estimator and Dantzig selector turn out to be inaccurate and fail to identify the
sparsity pattern of the vector θ∗. The same paper provides an alternative procedure,
called the Matrix Uncertainty selector (MU selector for short), which is robust to the
presence of noise. The MU selector θ̂MU is defined as a solution of the minimisation
problem

min{|θ|1 : θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ)
∣∣
∞ ≤ µ|θ|1 + τ}, (3)

where | · |q denotes the ℓq-norm for 1 ≤ q ≤ ∞, Θ is a given convex subset of Rp

characterising the prior knowledge about θ∗, and the constants µ and τ depend on the
level of the noises W and ξ respectively. An extension of the MU selector to generalized
linear model is discussed in [17].

In [14], a modification of the MU selector is suggested. It applies when W is a random
matrix with independent and zero mean entries Wij such that for any 1 ≤ j ≤ p, the sum
of expectations

σ2
j =

1

n

n∑

i=1

E[(Wij)
2]

is finite and admits a data-driven estimator. This is for example the case in the model
with missing data:

Z̃ij = Xijηij , i = 1, . . . , n, j = 1, . . . , p,

where for each fixed j = 1, . . . , p, the factors ηij, i = 1, . . . , n, are i.i.d. Bernoulli random
variables taking the value 1 with probability 1−πj and 0 with probability πj, 0 < πj < 1.
Indeed, this model can be rewritten under the form

Zij = Xij +Wij,

where Zij = Z̃ij/(1−πj) and Wij = Xij(ηij− (1−πj))/(1−πj). Therefore, in this model,
the σ2

j satisfy

σ2
j =

1

n

n∑

i=1

X2
ij

πj
1− πj

,

and it is easily shown that they admit good data-driven estimators σ̂2
j , see [14].

The construction of this modified estimator is based on the following idea. We cannot
use X in our estimation procedure since only its noisy version Z is available. In particular,
the MU selector involves the matrix ZTZ/n instead of XTX/n. Compared to XTX/n,
this matrix contains a bias induced by the diagonal entries of the matrix W TW/n whose
expectations σ2

j do not vanish. Therefore, if the σ2
j can be estimated, a natural idea is to

compensate this bias thanks to these estimates. This leads to a new estimator θ̂C , called
compensated MU selector, and defined as a solution of the minimisation problem

min{|θ|1 : θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ) + D̂θ
∣∣
∞ ≤ µ|θ|1 + τ}, (4)

where D̂ is the diagonal matrix with entries σ̂2
j , which are estimators of σ2

j , and µ ≥ 0
and τ ≥ 0 are constants chosen according to the level of the noises and the accuracy of
the estimators σ̂2

j .
Several aspects of the compensated MU selector are studied in [14], in particular the

rates of convergence in ℓq, the prediction risk and the design of confidence intervals. One
of the interest of this modification of the MU selector is that it enables us to obtain bounds
for the estimation errors which are decreasing with the sample size n. This is in contrast
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to the case of the MU selector, where the bounds are small only if the noise W is small.
For example, if θ∗ is s-sparse, it is shown in [14] that under appropriate assumptions,

|θ̂C − θ∗|q ≤ Cs1/q
√

log p

n
(|θ∗|1 + 1), 1 ≤ q ≤ ∞, (5)

with probability close to 1, where C > 0 is a constant independent of s, p, n, and θ∗.
An alternative Lasso type estimator (non-convex program) complemented by an iterative
relaxation procedure is introduced in [10]. This method requires the knowledge of the
exact value of |θ∗|1 (or of the property |θ∗|1 ≤ b

√
s for a constant b), and of an upper

bound on |θ∗|2. Considering the setting where the entries of the regression matrix X
are zero-mean subgaussian, it is shown in [10] that if θ∗ is s-sparse, under appropriate
assumptions, the resulting estimator θ̂′ satisfies

|θ̂′ − θ∗|2 ≤ C(θ∗)s1/2
√

log p

n
(|θ∗|2 + 1), (6)

with probability close to 1, where C(θ∗) > 0 depends on θ∗ in a non-specified way.
Related covariates selection results are reported in [16]. In [4, 5], the authors propose yet
another method of estimation of θ∗, based on orthogonal matching pursuit (OMP). Their
procedure needs the parameter s (the exact number of non-zero components of θ∗) as an
input. Moreover, they impose the additional assumption that the non-zero components
θ∗j of θ∗ are sufficiently large:

|θ∗j | ≥ c

√
log p

n
(|θ∗|2 + 1), j = 1, . . . , p, (7)

where c > 0 is a constant. Focusing as in [10] on the case where the entries of the regression
matrix X are zero-mean subgaussian, it is shown in [4, 5] that the OMP estimator satisfies
a bound analogous to (6) with constant C(θ∗) ≡ C > 0 independent of θ∗, as well as a
consistent support recovery property.

These recent developments shed light on errors-in-variables problems in high dimen-
sional settings. However, they are not fully satisfying. Indeed, the following issues are
remaining:

• From a practical viewpoint, the use of the above estimators can be intricate. In partic-
ular, the minimisation problem (4) is not always a convex one, and [14] does not provide
an algorithm enabling to solve it in general case. Although the methods suggested in
[10] and in [4, 5] are computationally feasible, they need the knowledge of the parameters
|θ∗|1, |θ∗|2 or s, which are not available in practice.

• While the bound (5) is more general than (6) (it holds for all q and not only for zero-
mean subgaussian X), it is less accurate than (6) in the case q = 2 assuming that (6)
is established with C(θ∗) ≡ C > 0 independent of θ∗. Indeed, |θ∗|2 is always smaller
than |θ∗|1. For example, if all components of θ∗ take the same value and θ∗ is s-sparse,
then |θ∗|2 = |θ∗|1/

√
s. In fact, the optimal rate of convergence in ℓq-norm on the class

of s-sparse vectors, as a function of s, p, n and the norms |θ∗|r, remains unknown. When
q = 2 and X is zero-mean Gaussian, a minimax lower bound including the factor |θ∗|2
and not |θ∗|1 is stated without proof in [5]. This, however, does not answer the question
in general situation.

The aim of this paper is to provide answers to the above two questions. It is organized
as follows. After giving some definitions and assumptions in Sections 2 and 3, we introduce
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in Section 4 a new estimator θ̂ which is based on second order cone programming and
thus can be computed in polynomial time. We show that, under appropriate conditions,
this estimator attains bounds of the form

|θ̂ − θ∗|q ≤ Cs1/q
√

log p

n
(|θ∗|2 + 1), 1 ≤ q ≤ ∞, (8)

with probability close to 1, where the constant C does not depend on s, p, n, and θ∗.
Contrary to the procedures of [4, 5] and [10], this new estimator does not require the
knowledge of |θ∗|1, |θ∗|2 or s to be computed. We also do not need a lower bound
condition such as (7) on the components of the target vector θ∗. Another difference from
the mentioned papers is that our main results do not focus on zero-mean subgaussian
regression matrices X, but rather deal with deterministic matrices X commonly appearing
in applications. As an easy consequence, we show that the results extend to random
matrices X by using suitable deviation properties for the quantity

m2 = max
j=1,...,p

1

n

n∑

i=1

X2
ij ,

where the Xij are the entries of X, as well as checking a restricted eigenvalue type
condition on the matrix XTX/n. This extension is possible under the assumption that
X is independent of ξ and W .

While the conic programming estimator solves a tractable convex minimisation prob-
lem, the compensated MU selector is a non-convex program. Section 5 is devoted to
address this issue. We show that under mild assumptions, the compensated MU selector
can be reduced to convex programming. In fact, when Θ = Rp or Θ is defined by linear
constraints, it can even be written as a single linear programming problem, which is of
course a computational advantage compared to the estimator based on conic program-
ming. However, the rate of convergence of the compensated MU selector is suboptimal.

Furthermore, in Section 6 we prove minimax lower bounds showing that no estimator
can achieve faster rate than that given in (8), up to a logarithmic in s factor, uniformly
on a class of s-sparse vectors. Finally, Section 7 provides some simulation results and the
proofs are relegated to the appendices.

2 Assumptions on the model

In this section, we introduce the assumptions that will be used below to study the statis-
tical properties of the estimators. Recall that for γ > 0, the random variable η is said to
be subgaussian with variance parameter γ2 (or shortly γ-subgaussian) if, for all t ∈ R,

E[exp(tη)] ≤ exp(γ2t2/2).

A random vector ζ ∈ Rp is said to be subgaussian with variance parameter γ2 (or shortly
γ-subgaussian) if the inner products (ζ, v) are γ-subgaussian for any v ∈ Rp with |v|2 = 1.
We shall consider the following assumptions.

(A1) The matrix X is deterministic.

(A2) The elements of the random vector ξ are independent zero-mean subgaussian random
variables with variance parameter σ2.
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(A3) The rows wi, i = 1, . . . , n, of the noise matrix W are independent zero-mean sub-
gaussian random vectors with variance parameter σ2

∗. Furthermore, W is indepen-
dent of ξ.

(A4) There exist statistics σ̂2
j such that for any ε > 0, we have

P
[

max
j=1,...,p

|σ̂2
j − σ2

j | ≥ b(ε)
]
≤ ε, (9)

where b(ε) = cb

√
log(c′bp/ε)

n for some constants cb > 0 and c′b > 0.

Assumptions (A1) – (A3) are quite standard. Note that we do not assume independence
of the components of each wi. Examples of sufficient conditions for (A4) in the model
with missing data are provided in [14].

3 Sensitivities

It is well known, see for example [2], that the performance of the Lasso or Dantzig selector
type estimators in high-dimensional linear models is determined by specific characteristics
of the Gram matrix

Ψ =
1

n
XTX,

such as the restricted eigenvalue constants. We shall need similar characteristics here.
Following [7], we define them in a more general form, so that the required property is a
consequence of the restricted eigenvalue property whenever the latter is satisfied. For a
vector θ in Rp, we denote by θJ the vector in Rp that has the same coordinates as θ on
the set of indices J ⊂ {1, . . . , p} and zero coordinates on its complement Jc. We denote
by |J | the cardinality of J .

For any u > 0 and any subset J of {1, . . . , p}, consider the cone

CJ(u) =
{
∆ ∈ Rp : |∆Jc |1 ≤ u|∆J |1

}
.

The use of such cones to define the restricted eigenvalue constants and other related
characteristics of the Gram matrix is standard in the literature on the Lasso and Dantzig
selector starting from [2]. For q ∈ [1,∞] and an integer s ∈ [1, p], the paper [7] defines
the ℓq-sensitivity as follows:

κq(s, u) = min
J : |J |≤s

(
min

∆∈CJ (u): |∆|q=1
|Ψ∆|∞

)
.

In [7, 8], it is shown that meaningful bounds for various types of errors in sparse linear
regression can be obtained in terms of the sensitivities κq(s, u). In particular, it is proved
in [7] that the approach based on sensitivities is more general than that based on restricted
eigenvalues or on the coherence condition. In particular, under those assumptions,

κq(s, u) ≥ cs−1/q,

for some constant c > 0, which implies the rate optimal bounds for the errors of Lasso
and Dantzig selector estimators as in [2]. For convenience, some properties of κq(s, u)
proved in [7] are summarized in Appendix C.
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In addition to κq(s, u), we introduce a prediction sensitivity as follows:

κpr(s, u) = min
J :|J |≤s

(
min

∆∈CJ (u):|Ψ1/2∆|2=1
|Ψ∆|∞

)
.

The sensitivity κpr(s, u) is useful to establish convergence in the prediction norm with
fast rates, see (17) in Theorem 2 below. Such rates can be obtained under more general
assumptions than rates of convergence in ℓq-norm. A discussion of the case of repeated
regressors is given in [1]. Lemma 8 in Appendix C shows that κpr(s, u) > 0 quite generally.
Also, κpr(s, u) ≥

√
κ1(s, u) (see Lemma 7 in Appendix C).

4 Estimator based on conic programming

In this section, we introduce our conic programming based estimator θ̂. This estimator is
computationally feasible and we provide upper bounds on its estimation and prediction
errors. It will be shown in Section 6 that these bounds cannot be improved in a minimax
sense. In what follows, we fix a (small) value ε > 0. The probability, with which the
bounds on the estimation and prediction errors hold, will be of the form 1− cε for some
c > 0.

To define the estimator θ̂, we consider the following minimisation problem:

minimise |θ|1 + λt (10)

over (θ, t) such that :

θ ∈ Θ,
∣∣ 1
nZ

T (y − Zθ) + D̂θ
∣∣
∞ ≤ µt+ τ, |θ|2 ≤ t.

Here, λ, µ, and τ are positive tuning constants, andΘ is a given subset of Rp characterising
the prior knowledge about θ. In the results below, µ and τ are of the form

µ = C

√
log(p/ε)

n
, τ = C

√
log(p/ε)

n

where we denote by C > 0 constants depending only onm2 and on the constants appearing
in Assumptions (A1) – (A4). More specifically, in the theory we take

µ = δ′1(ε) + δ′4(ε) + δ5(ε) + b(ε), τ = δ2(ε) + δ3(ε)

where δi(ε) and δ′i(ε) are defined in Lemmas 1 and 2 of Appendix A.
When Θ = Rp or Θ is a subset of Rp defined by linear constraints, (10) is a conic

programming problem. Therefore it can be efficiently solved in polynomial time.
Let (θ̂, t̂) be a solution of (10). We take θ̂ as estimator of θ∗. It follows that, under

Assumptions (A1) – (A4), the feasible set of the minimisation problem (10) is not empty
with high probability if ε is small enough (see Lemma 3 in Appendix B).

The following theorem is our main result about the statistical properties of the esti-
mator θ̂ based on conic programming.

Theorem 1. Assume (A1)-(A4), and that the true parameter θ∗ is s-sparse and belongs
to Θ. Let ε > 0 and 1 ≤ q ≤ ∞. Assume also that

κq(s, 1 + λ) ≥ cs−1/q, (11)

for some constant c > 0 and that

s ≤ c1
√

n/ log(p/ε), (12)
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for some small enough constant c1 > 0. Then, with probability at least 1− 8ε,

|θ̂ − θ∗|q ≤ Cs1/q
√

log(c′p/ε)

n
(|θ∗|2 + 1), (13)

for some constants C > 0 and c′ > 0 (here and in the sequel we set s1/∞ = 1).

Under the same assumptions, the prediction risk admits the following bound, with proba-
bility at least 1− 8ε,

1
n

∣∣X(θ̂ − θ∗)
∣∣2
2 ≤ Cs

log(c′p/ε)

n
(|θ∗|2 + 1)2 . (14)

The constants C > 0 and c′ > 0 in (13) and (14) depend only on m2 and on the constants
appearing in Assumptions (A1) – (A4).

The proof of Theorem 1 is given in Appendix B.

Some remarks are in order here. Theorem 1 is established under the condition κq(s, 1+
λ) ≥ cs−1/q, which holds under standard assumptions on the matrix X. For example, it
holds simultaneously for all q under the coherence assumption, see (45) in Appendix C.
For 1 ≤ q ≤ 2 this condition follows from the restricted eigenvalue (RE) assumption, see
(43), (44) in Appendix C. It is shown in [15] that the RE assumption is satisfied with high
probability for a large class of random matrices with dependent entries, including random
matrices with zero-mean subgaussian rows and non-trivial covariance structure, as well
as matrices with zero-mean independent rows and uniformly bounded entries. Theorem
1 extends to such random matrices X as follows. Fix positive constants ε, c,λ,m2 and
denote by P the class of all probability distributions PX on the set of n× p matrices X
such that

PX

[
κq(s, 1 + λ) ≥ cs−1/q, max

j=1,...,p

1

n

n∑

i=1

X2
ij ≤ m2

]
≥ 1− ε. (15)

Corollary 1. Let the assumptions of Theorem 1 be satisfied except for (A1) and (11).
Let X be a random matrix independent of (ξ,W ) such that PX ∈ P. Then, (13) and (14)
hold with probability at least 1− 9ε.

Although we do not pursue it here, Theorem 1 implies results on the correct selection
of the sparsity pattern via a thresholding procedure, in the same spirit as it is done in [11].

Importantly, the bound (13) shows that the conic programming estimator is optimal in
a minimax sense. Indeed, we give in Section 6 lower bounds for estimation errors which are
in agreement with the upper bounds in (13). The conic programming estimator θ̂ achieves
this rate with a computationally feasible procedure and does not need the knowledge of
the parameters |θ∗|1, |θ∗|2 or s.

Inspection of the proof reveals that if condition (12) does not hold, the conclusions of
Theorem 1 are valid provided |θ∗|2 is replaced by |θ∗|1 in the bounds, thus leading to results
analogous to those for the compensated MU selector. The next theorem formally states
that. Note that the assumptions are different and somewhat weaker than in Theorem 1.

Theorem 2. Assume (A1)-(A4), and that the true parameter θ∗ is s-sparse and belongs
to Θ. Let ε > 0 and 1 ≤ q ≤ ∞. Then, with probability at least 1− 8ε,

|θ̂ − θ∗|q ≤ C

κq(s, 1 + λ)

√
log(c′p/ε)

n
(|θ∗|1 + 1), (16)
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for some constants C > 0 and c′ > 0. Under the same assumptions, the prediction risk
admits the following bound, with probability at least 1− 8ε:

1
n

∣∣X(θ̂ − θ∗)
∣∣2
2

≤ C

κ2pr(s, 1 + λ)

log(c′p/ε)

n
(|θ∗|1 + 1)2 . (17)

Furthermore, under no assumption on X, with the same probability, we have the following
“slow rate” bound:

1
n

∣∣X(θ̂ − θ∗)
∣∣2
2

≤ C

√
log(c′p/ε)

n
(|θ∗|1 + 1)2. (18)

The constants C > 0 and c′ > 0 in (16) – (18) depend only on m2 and on the constants
appearing in assumptions (A1) – (A4).

The proof of Theorem 2 is given in Appendix B.

There are three different results in Theorem 2. The bound (16) is based on the ℓq-
sensitivity measures without the sparsity condition (12) and recovers the rates of the
compensated MU selector. The second result (17) presents a prediction rate but the
prediction sensitivity allows for more general designs. Finally the last result in Theorem
2 provides a slow rate of convergence that requires no assumptions on the design matrix.

5 Computation of the compensated MU selector

The goal of this section is to show that the minimisation problem (4) defining the com-
pensated MU selector can be solved numerically in an efficient way. This algorithmic issue
can be intricate since the problem is, in general, not convex, except in some specific situ-
ations. For example, if Θ = (R+)p, it obviously reduces to linear programming. However,
we shall see that under an additional mild technical hypothesis, solutions can be obtained
using convex or even linear programming. It is therefore computationally simpler than
the conic programming estimator θ̂. We focus here only on algorithmic aspects. There-
fore, we do not recall the assumptions under which the problem admits a solution and the
estimator enjoys relevant properties. We refer to [14] where these issues are addressed in
detail.

For brevity, we write
S(θ) = 1

nZ
T (y − Zθ) + D̂θ

and denote by (Ur)r≥0 the family of sets

Ur = {θ ∈ Θ : |S(θ)|∞ ≤ µr + τ} .

We also define the function ϕ by

ϕ(r) = min
θ∈Ur

|θ|1.

We assume in the next theorem that the equation r = ϕ(r) has a solution. Note that
ϕ is decreasing on [0,∞) and ϕ(r) ≥ 0. Moreover, for r, r′ ≥ 0, α ∈ [0, 1] we have
αUr + (1 − α)Ur′ ⊆ Uαr+(1−α)r′ so that ϕ is a convex function and therefore continuous
in its domain. In particular, a solution exists provided ϕ(0) < ∞.1

1More generally, since ϕ(r) < ∞ ⇔ Ur ̸= ∅, we can define r := inf{r ≥ 0 : ϕ(r) < ∞}. A solution
exists if and only if r ≤ ϕ(r).
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We now present our algorithm. Consider the following minimisation problem:

minimise t (19)

over (t, θ+, θ−) such that :

θ+ − θ− ∈ Θ, θ+j ≥ 0, θ−j ≥ 0, j = 1, . . . , p,

t =
p∑

j=1

(θ+j + θ−j ),

∣∣ 1
nZ

T (y − Z(θ+ − θ−)) + D̂(θ+ − θ−)
∣∣
∞ ≤ µt+ τ.

Here, θ+j , θ
−
j are the components of θ+, θ− respectively. As previously, µ, τ are positive

tuning constants, and Θ is a given subset of Rp characterising the prior knowledge about θ.
Let (t̂, θ̂+, θ̂−) be a solution of (19). We set θ̂C

′

= θ̂+− θ̂−. Note that (19) is a convex
program if Θ is a convex set, and it reduces to a linear program if Θ = Rp or if Θ is defined
by linear constraints. The use of this algorithm is justified by the following theorem.

Theorem 3. Assume that there exists a solution r̄ to the equation r = ϕ(r). Then θ̂C
′

is
a solution of the minimisation problem (4). Moreover, any solution θ̂C of (4) induces a
solution (r̄, θ+, θ−) of the problem (19), where θ+, θ− are vectors with components θ+j =

max{θ̂Cj , 0}, θ
−
j = max{−θ̂Cj , 0}.

The proof of Theorem 3 is given in Appendix D.
We would like to emphasize that (19) is not an obvious reformulation because the

problem (4) is non-convex. The proof of Theorem 3 exploits the structure of the ℓ1-norm
regularisation. Again, recall that the rates attained by the compensated MU selector are
suboptimal. However, it remains attractive compared to the conic programming estimator
thanks to the simplicity of its computation.

6 Minimax lower bounds for arbitrary estimators

In this section, we show that the rates of convergence obtained in Theorem 1 are optimal
(up to a logarithmic in s term) in a minimax sense for all estimators over the intersection
of the class of s-sparse vectors

B0(s) = {θ : |θ|0 ≤ s}

and the ℓ2-sphere
S2(R) = {θ : |θ|2 = R},

where R > 0. Defining the parameter set as the intersection Θ = B0(s) ∩ S2(R) is
motivated by the presence of both s and |θ∗|2 in the upper bounds of Theorem 1. Note
that considering a deterministic X means that X is a nuisance parameter of the model.
Thus, in the definition of the minimax risk, one should take the maximum not only
over Θ but also over a class of possible matrices X. More generally, one can deal with
random X and with the maximum over a class of distributions of X. We shall follow
this approach with the class of distributions P introduced in Section 4. The result of
Corollary 1 corresponding to (13) can be written as

sup
PX∈P

sup
θ∈B0(s)∩S2(R)

Pθ

[
|θ̂ − θ|q ≥ Cs1/q

√
log(c′p/ε)

n
(R+ 1)

]
≤ 9ε, (20)
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where, for θ∗ ∈ Rp, we denote by Pθ∗ the probability measure of the pair (y, Z) satisfying
(1)-(2). Our aim now is to prove the reverse inequality to (20) valid for all estimators.
For this purpose, instead of the maximum over all PX ∈ P, it suffices to consider one
particular distribution PX . We choose it to be the distribution of Gaussian X with i.i.d.
entries. Such matrices satisfy the RE condition with high probability, which implies (15)
(see for example [15] for details). Also, we shall assume that ξ and W are Gaussian with
i.i.d. entries. In summary, we have the following assumption.

(A5) The elements of the triplet (ξ,X,W ) are jointly independent. The components of
each of ξ,X,W are i.i.d. Gaussian zero-mean random variables with positive vari-
ances σ2,σ2

x, and σ2
∗ respectively.

The next theorem provides the desired minimax lower bound.

Theorem 4. Let p ≥ 2, 1 ≤ q ≤ ∞, 2 ≤ s ≤ p, and R > 0. Let Assumption (A5) hold,
and s log(p/s)/n ≤ c̄R2/(R2 + 1) for some constant c̄ > 0. Then there exist constants
c > 0 and c′ > 0, depending only on q,σ,σx,σ∗, c̄, such that

inf
T̂

sup
θ∈B0(s)∩S2(R)

Pθ

[
|T̂ − θ|q ≥ cs1/q

√
log(p/s)

n
(R + 1)

]
> c′, (21)

where inf
T̂

denotes the infimum over all estimators, and we set s1/∞ = 1.

The proof of Theorem 4 is given in Appendix D.

7 Monte Carlo study

In this section, we briefly illustrate the empirical performance of the estimators discussed
above. We consider the proposed conic programming estimator with λ = 0.5, 0.75, and 1
(denoted as Conic (λ)) and the Compensated MU selector (CompMU). To have bench-
marks, we also compute the (unfeasible) Dantzig selector which knows X (Dantzig X),
and the Dantzig selector that uses only Z (Dantzig Z), ignoring the errors-in-variables
issue.

The simulation study uses the following data generating process

yi = xTi θ
∗ + ξi, zi = xi + wi.

Here, ξi, wi, xi are independent and ξi ∼ N (0,σ2), wi ∼ N (0,σ2
∗Ip×p), xi ∼ N (0,Σ)

where Ip×p is the identity matrix and Σ is p×p matrix with elements Σij = ρ|i−j|. We set
σ = 0.128, σ2

∗ = 0.2, and ρ = 0.25. For simplicity, we assume that σ∗ and σ are known
and we set D̂ = D = σ2

∗Ip×p. The penalty parameters are set as τ = µ = σ
√

log(p/ε)/n
for ε = 0.05. We consider two choices for the vector of unknown parameters θ∗. The first
choice is θ∗ = 1.25(1, 1, 1, 1, 1, 0, . . . , 0)T , which captures the case where the coefficients are
well separated from zero. The second choice is θ∗ = 1.25(1, 1/2, 1/3, 1/4, 1/5, 0, . . . , 0)T ,
which represents the situation where θ∗ is sparse with components that are not necessarily
well separated from zero.

Table 1 reports the simulation results in the case θ∗ = 1.25(1, 1, 1, 1, 1, 0, . . . , 0)T . As
expected, the performance of all the estimators deteriorates as p grows but only slightly.
Also, the (unfeasible) estimator based on Dantzig selector that observes X outperforms
all feasible options. The estimator that ignores the errors-in-variables issue appears with
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First θ∗ n = 300 and p = 10 n = 300 and p = 50
Method Bias RMSE PR Bias RMSE PR
Conic (0.5) 0.0838151 0.1846383 0.1710643 0.0955776 0.2245046 0.2170111
Conic (0.75) 0.0838151 0.1846383 0.1710643 0.0953689 0.2250219 0.2176691
Conic (1) 0.0838151 0.1846383 0.1710643 0.0956858 0.2253614 0.2180705
CompMU 0.1566904 0.2191588 0.2225818 0.1840462 0.2362394 0.2507162
Dantzig X 0.0265486 0.0321528 0.0349530 0.0301636 0.0349420 0.0386731
Dantzig Z 0.2952845 0.3300527 0.3645317 0.3078976 0.4166192 0.4174840

First θ∗ n = 300 and p = 100 n = 300 and p = 500
Method Bias RMSE PR Bias RMSE PR
Conic (0.5) 0.1101178 0.2556778 0.2474407 0.1668239 0.2656095 0.263529
Conic (0.75) 0.0943678 0.2711839 0.2606997 0.1425789 0.2846916 0.2789745
Conic (1) 0.0942906 0.2734750 0.2631424 0.1276741 0.3121221 0.3093194
CompMU 0.1910509 0.2539411 0.2658907 0.2052520 0.2657204 0.2772154
Dantzig X 0.0317776 0.0366155 0.0403419 0.0352309 0.0403134 0.0448000
Dantzig Z 0.3081669 0.4994041 0.4652972 0.3536668 0.6865989 0.5921541

Table 1: Simulation results for the first choice of θ∗. For each estimator we provide average bias (Bias),
average root-mean squared error (RMSE), and average prediction risk (PR).

a higher bias leading to the worse performance in terms of root-squared mean error and
empirical risk. The performance of the feasible estimators discussed in this paper is
between these two benchmarks. The three conic estimators exhibit a better performance
than the compensated MU selector when p = 10, 50. For the larger dimensions p =
100, 500, their performance becomes similar to that of the compensated MU selector.
Nonetheless, the conic estimator with λ = 0.5 is slightly better than all the other feasible
estimators. We also note that for the small dimension p = 10, all three conic estimators
give the same results. The reason is that the conic constraint was not active for p = 10
so that the estimator was the same for the range of λ under consideration. This was not
the case for p = 50, 100, 500. These findings are very much aligned with the theoretical
properties of each estimator and sustain that the impact of errors-in-variables can be
substantial.

Table 2 reports the results for the second choice of θ∗, where the coefficients are not
well separated from zero. They are qualitatively the same as before. This displays the
robustness of the conclusions with respect to possible model selection errors which are
unavoidable when coefficients are not well separated from zero.

8 Conclusion

We have studied two estimation methods for high-dimensional linear regression with er-
rors in variables: the compensated MU selector of [14] and the conic programming based
estimator. These two procedures are at the same time computationally feasible, realisable
in practice (they do not use the knowledge of unaccessible characteristics of the target
θ∗) and reasonable in terms of theoretical performances. Namely, the conic programming
estimator is rate optimal in a minimax sense, while the compensated MU selector admits
somewhat less accurate bounds, with |θ∗|1 in place of |θ∗|2. Nevertheless, from an algo-

11



Second θ∗ n = 300 and p = 10 n = 300 and p = 50
Method Bias RMSE PR Bias RMSE PR
Conic (0.5) 0.0564816 0.1020763 0.0987642 0.0684162 0.1236275 0.1223037
Conic (0.75) 0.0564816 0.1020763 0.0987642 0.0682720 0.1229000 0.1219398
Conic (1) 0.0564816 0.1020763 0.0987642 0.0683291 0.1227749 0.1218898
CompMU 0.0839431 0.1171633 0.1204765 0.1007774 0.1318303 0.1396494
Dantzig X 0.0265486 0.0321528 0.0349530 0.0301636 0.0349420 0.0386731
Dantzig Z 0.1885828 0.2024266 0.2138763 0.1949159 0.2314964 0.2319208

Second θ∗ n = 300 and p = 100 n = 300 and p = 500
Method Bias RMSE PR Bias RMSE PR
Conic (0.5) 0.0714621 0.1374637 0.1349551 0.0945558 0.1472914 0.1477198
Conic (0.75) 0.0713670 0.1378301 0.1353203 0.0824510 0.1589884 0.1565416
Conic (1) 0.0716242 0.1381810 0.1357000 0.0783823 0.1682841 0.1658849
CompMU 0.1063728 0.1405472 0.1479579 0.1131005 0.1477336 0.1545960
Dantzig X 0.0317776 0.0366155 0.0403419 0.0352309 0.0403134 0.0448000
Dantzig Z 0.1978958 0.2536633 0.2432222 0.2152972 0.3145349 0.2766815

Table 2: Simulation results for the second choice of θ∗.

rithmic viewpoint, this last estimator is simpler since, in the cases of major interest, its
numerical computation can be reduced to linear programming.
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Appendix A. Bounds on stochastic error terms

In this appendix, we give upper bounds on the stochastic error terms appearing in the main
results. In what follows D is the diagonal matrix with diagonal elements σ2

j , j = 1, . . . , p,
and for a square matrix A, we denote by Diag{A} the matrix with the same dimensions
as A, the same diagonal elements as A and all off-diagonal elements equal to zero. The
following lemma is proved in [14].

Lemma 1. Let 0 < ε < 1 and assume (A1)-(A3). Then, with probability at least 1− ε,

∣∣ 1
nX

TW
∣∣
∞ ≤ δ1(ε),

∣∣ 1
nX

T ξ
∣∣
∞ ≤ δ2(ε),

∣∣ 1
nW

T ξ
∣∣
∞ ≤ δ3(ε),

∣∣ 1
n(W

TW −Diag{W TW})
∣∣
∞ ≤ δ4(ε),

∣∣ 1
nDiag{W TW}−D

∣∣
∞ ≤ δ5(ε),

where

δ1(ε) = σ∗

√
2m2 log(2p2/ε)

n
, δ2(ε) = σ

√
2m2 log(2p/ε)

n
,

δ3(ε) = δ5(ε) = δ̄(ε, 2p), δ4(ε) = δ̄(ε, p(p − 1)),
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and for an integer N ,

δ̄(ε, N) = max

(

γ0

√
2 log(N/ε)

n
,
2 log(N/ε)

t0n

)

,

with γ0, t0 are positive constants depending only on σ,σ∗.

We now give the second lemma.

Lemma 2. Let 0 < ε < 1, θ∗ ∈ Rp and assume (A1)-(A3). Then, with probability at
least 1− ε,

∣∣ 1
nX

TW θ∗
∣∣
∞ ≤ δ′1(ε)|θ∗|2, (22)

where δ′1(ε) = σ∗

√
2m2 log(2p/ε)

n . In addition, with probability at least 1− ε,

∣∣ 1
n(W

TW −Diag{W TW})θ∗
∣∣
∞ ≤ δ′4(ε)|θ∗|2, (23)

where

δ′4(ε) = max

(

γ2

√
2 log(2p/ε)

n
,
2 log(2p/ε)

t2n

)

,

and γ2, t2 are positive constants depending only on σ∗.

Proof. If θ∗ = 0, the result is obvious. So we assume that θ∗ ̸= 0. Let v = θ∗/|θ∗|2. We
can write

∣∣ 1
nX

TW θ∗
∣∣
∞ = |θ∗|2 max

j=1,...,p

∣∣∣∣∣
1

n

n∑

i=1

Xij(wi, v)

∣∣∣∣∣ , (24)

where (wi, v) =
∑p

k=1Wikvk and we denote by Wik and vk the elements of the matrix
W and the vector v respectively. By Assumption (A3), the random variable (wi, v) is
subgaussian with variance parameter σ2

∗ . Using this together with the independence of
the wi for different i, we get that, for all t ∈ R,

E
[
exp

( t

n

n∑

i=1

Xij(wi, v)
)]

=
n∏

i=1

E
[
exp

( t

n
Xij(wi, v)

)]

≤
n∏

i=1

exp
(σ2

∗t
2X2

ij

2n2

)
≤ exp

(σ2
∗m2t2

2n

)
.

Thus, the random variable

ηj =
1

n

n∑

i=1

Xij(wi, v)

is γ1-subgaussian with γ1 = σ∗
√

m2/n. This implies the classical tail bound

P[|ηj| ≥ δ] ≤ 2 exp
(
− δ2/(2γ21 )

)
,

for any δ > 0. This together with (24) and the union bound yields (22).
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To prove (23), we shall use the following fact (see for example Lemma 5.14 in [19]): If η
is a subgaussian random variable with variance parameter γ, then η2 is sub-exponential,
that is there exist constants γ0 = γ0(γ) and t0 = t0(γ) such that

E[exp(tη2)] ≤ exp(γ20t
2/2), |t| ≤ t0. (25)

Analogously to (24), we obtain

∣∣ 1
n(W

TW −Diag{W TW})θ∗
∣∣
∞ = |θ∗|2 max

j=1,...,p
|η′j |, (26)

where

η′j =
1

n

n∑

i=1

Wij

p∑

k=1,k ̸=j

Wikvk.

Now, for all t ∈ R, we have

E[exp(tη′j)] =
n∏

i=1

E
[
exp

(tWij

n

p∑

k=1,k ̸=j

Wikvk
)]

≤
n∏

i=1

E
[
exp

{ t

2n

(
W 2

ij +
( p∑

k=1,k ̸=j

Wikvk
)2)}]

.

Then, using Cauchy-Schwarz inequality, we get

E[exp(tη′j)] ≤
n∏

i=1

{
E
[
exp

(tW 2
ij

n

)]
E
[
exp

( t

n

( p∑

k=1,k ̸=j

Wikvk
)2)]}1/2

.

Recall that Assumption (A3) implies that bothWij and
∑p

k=1,k ̸=j Wikvk are σ∗-subgaussian.
Consequently, in view of (25), their squared values are (γ0(σ∗), t0(σ∗))-sub-exponential,
which yields

E[exp(tη′j)] ≤
n∏

i=1

exp
(γ0(σ∗)2

2

( t

n

)2)
= exp

(γ0(σ∗)2t2

2n

)
, |t| ≤ t0(σ∗)n.

Set γ2 = γ0(σ∗) and t2 = t0(σ∗). The last display states that η′j is (γ2/
√
n, t2n)-sub-

exponential. This implies the tail bound

P(|η′j | ≥ δ) ≤ 2max
(
exp(−nδ2/(2γ22 )), exp(−δt2n/2)

)
,

for any δ > 0. This together with (26) and the union bound yields (23). !

Appendix B. Proofs of the upper bounds for the estimation

and prediction errors

Set for brevity δi = δi(ε), δ′i = δ′i(ε), b = b(ε). We first prove some preliminary lemmas.

Lemma 3. Assume (A1)-(A4). Then with probability at least 1 − 6ε, the pair (θ, t) =
(θ∗, |θ∗|2) belongs to the feasible set of the minimisation problem (10).
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Proof. First, note that ZT (y − Zθ∗) + nD̂θ∗ is equal to

−XTW θ∗ +XT ξ +W T ξ − (W TW −Diag{W TW})θ∗

− (Diag{W TW}− nD)θ∗ + n(D̂ −D)θ∗.

By definition of δi and b, with probability at least 1− 4ε, we have

| 1nX
T ξ|∞ + | 1nW

T ξ|∞ ≤ δ2 + δ3 (27)

|( 1nDiag{W TW}−D)θ∗|∞ ≤ | 1nDiag{W TW}−D|∞|θ∗|∞ ≤ δ5|θ∗|2 (28)

|(D̂ −D)θ∗|∞ ≤ b|θ∗|∞ ≤ b|θ∗|2, (29)

where in (28) and (29) we have used that the considered matrices are diagonal. Also, by
Lemma 2, with probability at least 1− 2ε, we have

| 1nX
TW θ∗|∞ ≤ δ′1|θ∗|2 (30)

| 1n(W
TW −Diag{W TW})θ∗|∞ ≤ δ′4|θ∗|2. (31)

Combining the decomposition of ZT (y − Zθ∗) + nD̂θ∗ together with (27)-(31), we find
that ∣∣ 1

nZ
T (y − Zθ∗) + D̂θ∗

∣∣
∞ ≤ µ|θ∗|2 + τ,

with probability at least 1− 6ε, which implies the lemma. !

We now give two lemmas which will be crucial in the proof of our main theorem on the
accuracy of the conic programming based estimator (Theorem 1).

Lemma 4. Assume (A1)-(A4). Let J = {j : θ∗j ̸= 0}. Then with probability at least
1− 6ε (on the same event as in Lemma 3), we have

|(θ̂ − θ∗)Jc |1 ≤ (1 + λ)|(θ̂ − θ∗)J |1, (32)

t̂ ≤ (1/λ)|θ̂ − θ∗|1 + |θ∗|2. (33)

Proof. Set ∆ = θ̂− θ∗. On the event of Lemma 3, (θ∗, |θ∗|2) belongs to the feasible set of
the minimisation problem (10). Consequently,

|θ̂|1 + λ|θ̂|2 ≤ |θ̂|1 + λt̂ ≤ |θ∗|1 + λ|θ∗|2. (34)

This implies

|∆Jc |1 ≤ |∆J |1 + λ(|θ∗|2 − |θ̂|2) ≤ |∆J |1 + λ|∆J |2 ≤ (1 + λ)|∆J |1,

and (32) follows. To prove (33), it suffices to note that (34) implies

λt̂ ≤ |θ∗|1 − |θ̂|1 + λ|θ∗|2 ≤ |θ̂ − θ∗|1 + λ|θ∗|2.

!

Lemma 5. Assume (A1)-(A4). Then, on a subset of the event of Lemma 3 having
probability at least 1− 8ε, we have

∣∣ 1
nX

TX(θ̂ − θ∗)
∣∣
∞ ≤ µ1|θ∗|2 + µ2|θ̂ − θ∗|1 + τ1, (35)

where µ1 = µ+ b+ δ′1 + δ′4 + δ5, µ2 = µ/λ+ b+ 2δ1 + δ4 + δ5 and τ1 = τ + δ2.
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Proof. Throughout the proof, we assume that we are on the event of probability at least
1− 6ε where inequalities (27) – (31) hold and (θ∗, |θ∗|2) belongs to the feasible set of the
minimisation problem (10). Let ∆ = θ̂ − θ∗. We have that

| 1nX
TX∆|∞

is smaller than

| 1nZ
T (Z θ̂ − y)− D̂θ̂|∞ + |( 1nZ

TW −D)θ̂|∞
+|(D̂ −D)θ̂|∞ + | 1nZ

T ξ|∞ + | 1nW
TX∆|∞.

Using the fact that (θ̂, t̂) belongs to the feasible set of the minimisation problem (10)
together with (33), we obtain

| 1nZ
T (Z θ̂ − y)− D̂θ̂|∞ ≤ µt̂+ τ ≤ (µ/λ)|θ̂ − θ∗|1 + µ|θ∗|2 + τ.

Therefore,
| 1nX

TX∆|∞
does not exceed

(µ/λ)|θ̂ − θ∗|1 + µ|θ∗|2 + τ1 + |( 1nZ
TW −D)θ̂|∞ + |(D̂ −D)θ̂|∞ + | 1nW

TX∆|∞.

We now bound the last expression using that θ̂ = θ∗ + ∆, Assumption (A4), and (29).
This gives

| 1nX
TX∆|∞ ≤ ((µ/λ) + b)|∆|1 + (µ+ b)|θ∗|2 + τ1 + |( 1nZ

TW −D)θ∗|∞ (36)

+ |( 1nZ
TW −D)∆|∞ + | 1nW

TX∆|∞.

Remark that

|( 1nZ
TW −D)∆|∞ ≤ | 1nZ

TW −D|∞|∆|1
≤
(
| 1n(W

TW −Diag{W TW})|∞ + | 1nDiag{W TW}−D|∞ + | 1nX
TW |∞

)
|∆|1.

Therefore,
|( 1nZ

TW −D)∆|∞ ≤ (δ1 + δ4 + δ5)|∆|1, (37)

with probability at least 1− 8ε (since we intersect the initial event of probability at least
1 − 6ε with the event of probability at least 1 − 2ε where the bounds δ1 and δ4 hold for
the corresponding terms). Next, on the same event of probability at least 1− 8ε,

| 1nW
TX∆|∞ ≤ | 1nX

TW |∞|∆|1 ≤ δ1|∆|1. (38)

Finally, in view of Lemma 2 and (28), on the initial event of probability at least 1− 6ε,

|( 1nZ
TW −D)θ∗|∞

≤| 1n(W
TW −Diag{W TW})θ∗|∞ + |( 1nDiag{W TW}−D)θ∗|∞ + | 1nX

TW θ∗|∞
≤(δ′1 + δ′4 + δ5)|θ∗|2. (39)

To complete the proof, it suffices to plug (37) – (39) in (36) and to set µ1 = µ+b+δ′1+δ′4+δ5
and µ2 = µ/λ+ b+ 2δ1 + δ4 + δ5. !
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Proof of Theorem 1. Throughout the proof, we assume that we are on the event of
probability at least 1 − 8ε of Lemma 5 where the results of Lemmas 3, 4 and 5 hold.
Property (32) in Lemma 4 implies that ∆ is in the cone CJ(1+λ). Therefore, by definition
of ℓq-sensitivity and Lemma 5, we have

κq(s, 1 + λ)|∆|q ≤
∣∣ 1
nX

TX∆
∣∣
∞ ≤ µ1|θ∗|2 + µ2|∆|1 + τ1.

Furthermore, using again (32), we have

|∆|1 = |∆Jc |1 + |∆J |1 ≤ (2 + λ)|∆J |1
≤ (2 + λ)s1−1/q|∆J |q ≤ (2 + λ)s1−1/q|∆|q.

It follows that
(κq(s, 1 + λ)− (2 + λ)µ2s

1−1/q)|∆|q ≤ µ1|θ∗|2 + τ1,

which implies

(c− (2 + λ)µ2c1
√

n/ log(p/ε))s−1/q|∆|q ≤ µ1|θ∗|2 + τ1

in view of the assumptions of the theorem. Recall that µ2 ≤ a
√

log(p/ε)/n, where a > 0
is a constant. Therefore, (13) follows if c1 < c((2 + λ)a)−1. To prove (14), write first

1
n |X∆|22 ≤

1
n

∣∣XTX∆
∣∣
∞ |∆|1.

Next remark that from (13), we have

|∆|1 ≤ Cs

√
log(c′p/ε)

n
(|θ∗|2 + 1) (40)

and recall that from Lemma 5,

∣∣ 1
nX

TX∆
∣∣
∞ ≤ C

√
log(c′p/ε)

n
(1 + |θ∗|2 + |∆|1). (41)

Furthermore, from (40) and (12) we also have

|∆|1 ≤ C(|θ∗|2 + 1),

for some constant C > 0. Then (14) is easily deduced.

Proof of Theorem 2. We place ourselves in the same framework as in the proof of Theorem
1. By the definition of the estimator, |∆|1 ≤ |θ̂|1 + |θ∗|1 ≤ {|θ∗|1 + λ|θ∗|2} + |θ∗|1 ≤
(2 + λ)|θ∗|1 where we have used that |θ∗|2 ≤ |θ∗|1. This and Lemma 5 yield

∣∣ 1
nX

TX∆
∣∣
∞ ≤ µ1|θ∗|2 + µ2|∆|1 + τ1 ≤ (µ1 + (2 + λ)µ2)|θ∗|1 + τ1.

Therefore, arguing as in the proof of Theorem 1, we find

κq(s, 1 + λ)|∆|q ≤ (µ1 + (2 + λ)µ2)|θ∗|1 + τ1,

which implies (16). To prove (17), we note that by definition of κpr and the fact that
∆ ∈ CJ(1 + λ),

κ2pr(s, 1 + λ)

n
|X∆|22 ≤ 1

n

∣∣XTX∆
∣∣2
∞ ≤ {(µ1 + (2 + λ)µ2)|θ∗|1 + τ1}2 .

Finally, (18) follows from

1
n |X∆|22 ≤

1
n

∣∣XTX∆
∣∣
∞ |∆|1 ≤ {(µ1 + (2 + λ)µ2)|θ∗|1 + τ1}(2 + λ)|θ∗|1

since |∆|1 ≤ (2 + λ)|θ∗|1.
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Appendix C. Properties of the sensitivities

Here we collect some properties of the sensitivities κq(s, u) and κpr(s, u). First, follow-
ing [7], we give a relation between κq(s, u) and the Restricted Eigenvalue (RE) and Coher-
ence (C) constants. For completeness, we recall the Restricted Eigenvalue and Coherence
assumptions.

Assumption RE(s, u). Let u > 0, 1 ≤ s ≤ p. There exists a constant κRE(s, u) > 0
such that

min
∆∈CJ (u)\{0}

|∆TΨ∆|
|∆J |22

≥ κRE(s, u)

for all subsets J of {1, . . . , p} of cardinality |J | ≤ s.

Assumption C. All diagonal elements of Ψ are equal to 1 and all its off-diagonal
elements of Ψij satisfy the coherence condition: maxi ̸=j |Ψij | ≤ ρ for some ρ < 1.

Assumption C with ρ < (cs)−1 and c > 0 depending only on u implies Assumption
RE(s, u), see [2]. The following lemma due to [7] provides useful relations between the
constants κRE, ρ and κq. In this lemma, we denote by c positive constants that do not
depend on s.

Lemma 6. Let u > 0, 1 ≤ s ≤ p. For any α ∈ (0, 1), there exists c > 0 such that if
Assumption C holds with ρ < (cs)−1, then

κ∞(s, u) ≥ α. (42)

Next, under Assumption RE(s, u),

κ1(s, u) ≥ (cs)−1κRE(s, u), (43)

and, under Assumption RE(2s, u), for any s ≤ p/2, 1 < q ≤ 2, we have

κq(s, u) ≥ c(q)s−1/qκRE(2s, u), (44)

where c(q) > 0 depends only on u and q. Furthermore,

κq(s, u) ≥ (2s)−1/qκ∞(s, u), ∀ 1 ≤ q ≤ ∞. (45)

Note that (42) and (45) yield the control of the sensitivities κq under the Coherence
assumption for all 1 ≤ q ≤ ∞. The next lemma relates κpr to κ1.

Lemma 7. For any u > 0, 1 ≤ s ≤ p,

κpr(s, u) ≥
√
κ1(s, u).

Proof. Fix a set J such that |J | ≤ s. Since ∆TΨ∆ ≤ |Ψ∆|∞|∆|1, we obtain

min
∆∈CJ (u):|Ψ1/2∆|2=1

|Ψ∆|∞ = min
∆∈CJ (u):|Ψ1/2∆|2>0

|Ψ∆|∞/
√
∆TΨ∆

≥ min
∆∈CJ (u):|Ψ1/2∆|2>0

√
|Ψ∆|∞/|∆|1

≥ min
∆∈CJ (u):|∆|1>0

√
|Ψ∆|∞/|∆|1

= min
∆∈CJ (u):|∆|1=1

√
|Ψ∆|∞

where we used the fact that {∆ : |Ψ1/2∆|2 > 0} ⊆ {∆ : |∆|1 > 0, |Ψ∆|∞ > 0}. Taking
the minimum over J such that |J | ≤ s and using the definitions of κpr(s, u) and κ1(s, u)
we obtain the result. !
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Lemma 8. If rank(X) = min{n, p}, then for any u > 0, 1 ≤ s ≤ p,

κpr(s, u) > 0.

Proof. If rank(X) = p the result follows trivially, so we assume that rank(X) = n < p.
We have

min
∆∈CJ (u):|Ψ1/2∆|2=1

|Ψ∆|∞ = min
∆∈CJ (u):|X∆/

√
n|2=1

|XTX∆/n|∞

≥ min
∆∈Rp:|X∆/

√
n|2=1

|XTX∆/n|∞ ≥ min
δ∈Rn:|δ|2=1

|XT δ/
√
n|∞,

where we used the fact that δ = X∆/
√
n ∈ Rn. Since rank(XT ) = rank(X) = n, we have

XT δ/
√
n ̸= 0 for all δ ∈ Rn \ {0}. Since {δ ∈ Rn : |δ|2 = 1} is compact, the minimum is

achieved at some δ∗, with XT δ∗/
√
n ̸= 0, so that |XT δ∗/

√
n|∞ > 0. Taking the minimum

over (the finite collection of) J such that |J | ≤ s yields the result. !

Appendix D. Proofs of Theorems 3 and 4

Proof of Theorem 3. Let r̄ be a solution of the equation r = ϕ(r). We set

U∗ = {θ ∈ Θ : |S(θ)|∞ ≤ µ|θ|1 + τ} .

The minimisation problem (4) has the form

min
θ∈U∗

|θ|1.

First remark that
min
θ∈U∗

|θ|1 ≥ r̄. (46)

Indeed, with the convention that the minimum over an empty set is equal to +∞, we get

min
θ∈U∗

|θ|1 = min
(

min
θ∈U∗:|θ|1≤r̄

|θ|1, min
θ∈U∗:|θ|1>r̄

|θ|1
)

≥ min
(

min
θ∈Ur̄:|θ|1≤r̄

|θ|1, r̄
)

≥ min
(
min
θ∈Ur̄

|θ|1, r̄
)
= min(ϕ(r̄), r̄) = r̄.

Let now θ̄ be any solution of
min
θ∈Ur̄

|θ|1. (47)

Then θ̄ ∈ Θ, |θ̄|1 = r̄ and

|S(θ̄)|∞ ≤ µr̄ + τ = µ|θ̄|1 + τ.

Thus, θ̄ ∈ U∗, which implies
min
θ∈U∗

|θ|1 ≤ |θ̄|1 = r̄.

This and (46) imply that θ̄ is also a solution of (4) and

min
θ∈U∗

|θ|1 = r̄. (48)
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Hence all solutions of (47) are also solutions of (4). Conversely, if θ′ is a solution of (4),
then, in view of (48), |θ′|1 = r̄. This and the fact that θ′ ∈ U∗ imply that θ′ ∈ Θ and

|S(θ′)|∞ ≤ µr̄ + τ.

This means that θ′ ∈ Ur̄. Since

min
θ∈Ur̄

|θ|1 = r̄ = |θ′|1,

we get that θ′ is a solution of (47). Consequently, the solutions of (4) and (47) coincide.
Let now θ̂C = (θC1 , . . . , θ

C
p ) be a solution of (4). Then setting θ+j = max{θ̂Cj , 0},

θ−j = max{−θ̂Cj , 0}, t = |θ+|1 + |θ−|1 we have that θ̂C = θ+ − θ− and |θ̂C |1 = t. Thus,

(|θ̂C |1, θ+, θ−) is feasible for the problem (19). This implies that the minimum in (19)
is lower than the minimum in (4), which yields |θ̂C′ |1 ≤ t = |θ̂C |1. Moreover, for any
solution (t̂, θ̂+, θ̂−) of (19) the difference θ̂C

′

= θ̂+ − θ̂− satisfies

∣∣ 1
nZ

T (y − Z θ̂C
′

) + D̂θ̂C
′
∣∣
∞ ≤ µt̂+ τ ≤ µ|θ̂C |1 + τ = µr̄ + τ

since ϕ(r̄) = r̄. Thus, θ̂C
′ ∈ Ur̄. Hence, by definition of ϕ, we have ϕ(r̄) ≤ |θ̂C′ |1. There-

fore, since we have shown before that |θ̂C′ |1 ≤ |θ̂C |1, we obtain |θ̂C′ |1 = |θ̂C |1 = r̄ and
(r̄, θ+, θ−) is a solution of (19).

Proof of Theorem 4. We denote by K(P,Q) the Kullback-Leibler divergence between two
probability measures P and Q. We shall use the following lemma.

Lemma 9. Let θ ∈ Rp and θ′ ∈ Rp be such that |θ|2 = |θ′|2. Under Assumption (A5),

K(Pθ,Pθ′) =
n

2σ2
θ

|θ − θ′|22,

where σ2
θ =

(
σ2
∗σ

2
x|θ|22 + σ2(σ2

∗ + σ2
x)
)
/σ4

x.

Proof of this lemma is omitted; it is obtained by a direct calculation using the fact
that (y, Z) is jointly Gaussian.

We now proceed to the proof of Theorem 4. Throughout, we will denote by c positive
constants which may vary from line to line. To derive the lower bounds, we apply Theo-
rem 2.7 in [18]. Thus, we define a finite set of “hypotheses” included in B0(s) ∩ S2(R).
To this end, we first introduce

M =
{
x ∈ {0, 1}p−1 : ρH(0, x) = s− 1

}
,

where ρH denotes the Hamming distance between elements of {0, 1}p−1, and 0 is the zero
vector. Then, there exists a subset M′ of M such that for any x, x′ in M′ with x ̸= x′,
we have ρH(x, x′) > s/16, and moreover,

log|M′| ≥ c′1s log
(p
s

)

for some absolute constant c′1 > 0. Indeed, this follows from the Varshamov-Gilbert bound
(see Lemma 2.9 in [18]) if s−1 > (p−1)/2 and from Lemma A.3 in [12] if s−1 ≤ (p−1)/2.

We denote by ω′
j the elements of the finite set M′. For j = 1, . . . , |M′|, we define

vectors ωj ∈ {0, 1}p with components ωj1 = 0 and ωjk = ω′
j(k−1) for k ≥ 2, where ωjk is
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the k-th component of ωj . We also define ω0 as the vector in {0, 1}p with all components
equal to 0 except the first one equal to 1.

We now define the set of “hypotheses” (ω̄j , j = 0, . . . , |M′|+1), where ω̄0 = Rω0, and

ω̄j =
R√

1 + γ2(s− 1)
(ω0 + γωj), j = 1, . . . , |M′|+ 1.

Here, γ is a positive parameter to be defined. Note that the sparsity of ω̄j is equal to
s and that |ω̄j|2 = R. Thus all ω̄j belong to B0(s) ∩ S2(R). Moreover, for j ≥ 1, by
Lemma 9, we have

K(Pω̄j ,Pω̄0
) ≤ cn

R2 + 1

(
R2
(√1 + γ2(s− 1)− 1√

1 + γ2(s− 1)

)2
+

R2

1 + γ2(s− 1)
γ2s
)

≤ cn
R2γ2s

(R2 + 1)(1 + γ2(s− 1))
≤ c′2nγ

2s
R2

R2 + 1
,

where c′2 > 0 is a constant depending only on σ2,σ2
∗ and σ2

x. Now, taking

γ =
( c′1
16c′2n

log
(p
s

) R2 + 1

R2

)1/2
, (49)

we obtain, for all j,

K(Pω̄j ,Pω̄0
) ≤ 1

16
log |M′|.

Next, for j and j′ both different from 0,

|ω̄j − ω̄j′|q =
Rγ√

1 + γ2(s− 1)

( p−1∑

k=1

|ωjk − ωj′k|q
)1/q

≥ cs1/q
Rγ√

1 + γ2(s − 1)

and for j ̸= 0,

|ω̄j − ω̄0|q ≥
Rγ|ωj|q√

1 + γ2(s− 1)
≥ cs1/q

Rγ√
1 + γ2(s− 1)

.

The definition of γ in (49) and condition (21) imply that, for any j and j′,

|ω̄j − ω̄j′|q ≥ cs1/qRγ ≥ cs1/q(R+ 1)

√
log(p/s)

n
.

We can now apply Theorem 2.7 in [18] to obtain the result.
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