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Chaire Havas-Dauphine Économie des Nouvelles Données
Paris, France

Francis Bach francis.bach@ens.fr

INRIA - SIERRA project-team
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Abstract

Many of the ordinal regression models that have been proposed in the literature can be
seen as methods that minimize a convex surrogate of the zero-one, absolute, or squared
loss functions. A key property that allows to study the statistical implications of such
approximations is that of Fisher consistency. In this paper we will characterize the Fisher
consistency of a rich family of surrogate loss functions used in the context of ordinal regres-
sion, including support vector ordinal regression, ORBoosting and least absolute deviation.
We will see that, for a family of surrogate loss functions that subsumes support vector or-
dinal regression and ORBoosting, consistency can be fully characterized by the derivative
of a real-valued function at zero, as happens for convex margin-based surrogates in binary
classiÞcation. We also derive excess risk bounds for a surrogate of the absolute error that
generalize existing risk bounds for binary classiÞcation. Finally, our analysis suggests a
novel surrogate of the squared error loss. To prove the empirical performance of such sur-
rogate, we benchmarked it in terms of cross-validation error on 9 di!erent datasets, where
it outperforms competing approaches on 7 out of 9 datasets.

Keywords: Fisher consistency, ordinal regression, calibration, surrogate loss, excess risk
bound.

1. Introduction

In ordinal regression the goal is to learn a rule to predict labels from an ordinal scale, i.e.,
labels from a discrete but ordered set. This arises often when the target variable consists of
human generated ratings, such as (Òdo-not-botherÓ� Òonly-if-you-mustÓ� ÒgoodÓ� Òvery-
goodÓ� Òrun-to-seeÓ) in movie ratings (Crammer and Singer, 2001), (ÒabsentÓ� ÒmildÓ
� ÒsevereÓ) for the symptoms of a physical disease (Armstrong and Sloan, 1989) and the
NRS-11 numeric rating scale for clinical pain measurement (Hartrick et al., 2003). Ordinal
regression models have been successfully applied to Þelds as diverse as econometrics (Greene,
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1997), epidemiology (Ananth and Kleinbaum, 1997), fMRI-based brain decoding (Doyle
et al., 2013) and collaborative Þltering (Rennie and Srebro, 2005).

Ordinal regression shares propertiesÐand yet is fundamentally di!erentÐfrom both mul-
ticlass classiÞcation and regression. As in the multiclass classiÞcation setting, the target
variables consist of discrete values, and as in the regression setting (but unlike the multiclass
setting) there is a meaningful order between the classes. If we think of the symptoms of a
physical disease, it is clear that if the true label is ÒsevereÓ it is preferable to predict ÒmildÓ
than ÒabsentÓ. Ordinal regression models formalize this notion of order by ensuring that
predictions farther from the true label incur a greater penalty than those closer to the true
label.

The ordinal regression approach also shares properties with the learning-to-rank prob-
lem (Liu, 2011), in which the goal is to predict the relative order of a sequence of instances.
Hence, this approach focuses on predicting a relative order while ordinal regression focuses
on predicting a label for each instance. In this sense, it is possible for a ranking model (but
not for an ordinal regression one) that predicts the wrong labels to incur no loss at all, as
long as the relative order of those labels are correct, e.g. if the prediction is given by the
true label plus an additive bias. Although ordinal regression and ranking are di!erent prob-
lems, the distinction between both has not always been clear, generating some confusion
between the two problems. For example, in the past some methods presented with the word
ÒrankingÓ in the title would be considered today ordinal regression methods (Crammer and
Singer, 2001; Shashua and Levin, 2003; Crammer and Singer, 2005) and likewise some of the
Þrst pairwise ranking methods (Herbrich et al., 1999) featured the word ordinal regression
in the title.

Despite its widespread applicability, there exists a relative paucity in the understanding
of the theoretical properties behind ordinal regression methods, compared to the ones that
already exist for other settings such as binary classiÞcation. One such example is that of
Fisher consistency, a notion that relates the minimization of a given loss to the minimiza-
tion of a surrogate with better computational properties. The importance of this property
stems from the fact that many supervised learning methods, such as support vector ma-
chines, boosting and logistic regression for binary classiÞcation, can be seen as methods
that minimize a convex surrogate on the 0-1 loss. Such results have emerged in recent
years for classiÞcation (Bartlett et al., 2003; Zhang, 2004a; Tewari and Bartlett, 2007),
ranking (Duchi et al., 2010; Calauzenes et al., 2012) and even multiclass classiÞcation with
an arbitrary loss function (Ramaswamy and Agarwal, 2012, 2014), a setting that subsumes
ordinal regression. Despite these recent progress, the Fisher consistency of most surrogates
used within the context of ordinal regression remains elusive. The aim of this paper is to
bridge the gap by providing an analysis of Fisher consistency for a wide family of ordinal re-
gression methods that parallels the ones that already exist for other multiclass classiÞcation
and ranking.

Notation. Through the paper, we will use k to denote the number of classes (i.e.,
labels) in the learning problem. We will denote by S the subset of Rk�1 for which the
components are increasing, that is,

S :=
!
↵

:
↵ 2 Rk�1 and ↵

i

 ↵

i+1

for 1  i  k � 2
"

.
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" p denotes thep-dimensional simplex, which is deÞned as

" p :=

#
$

%
x 2 Rp :

x

i

� 0 and
p&

i=1

x

i

= 1

'
(

)
.

Following Knuth (1992) we use the Iverson bracketJ·K as

JqK :=

*
1 if q is true

0 otherwise .

We will also make reference to loss functions commonly used in binary classiÞcation. These
are the Hinge loss ('(t) = max(1 � t, 0)), the squared Hinge loss ('(t) = max(1 � t, 0)2),
the logistic loss ('(t) = log(1 + e

�t)), exponential loss ('(t) = e

�t) and the squared loss
('(t) = (1 � t)2).

1.1 Problem setting

Here we present the formalism that we will be using throughout the paper. Let (X ,A) be
a measurable space. Let (X,Y ) be two random variables with joint probability distribution
P , where X takes its values inX and Y is a random label taking values in a Þnite set of
k ordered categories that we will denote Y = {1, . . . , k}. In the ordinal regression problem,
we are given a set ofn observations{(X

1

, Y

1

), . . . , (X
n

, Y

n

)} drawn i.i.d. from X ⇥ Y and
the goal is to learn from the observations a measurable mapping called adecision function
f

: X ! S ✓ Rk�1 so that the risk given below is as small as possible:

L(f ) := E(`(Y, f (X))) , (1)

where` : Y⇥S is a loss function that measures the disagreement between the true label and
the prediction. For ease of optimization, the decision function has its image in a subset of
Rk�1, and the function that converts an element ofS into a class label is called aprediction
function. The prediction function that we will consider through the paper is given for ↵ 2 S
by the number of coordinates below zero plus one, that is,

pred(↵) := 1 +
k�1&

i=1

J↵
i

< 0K . (2)

Note that for the case of two classesY = {1, 2}, the decision function is real-valued and
the prediction defaults the common binary classiÞcation rule in which prediction depends
on the sign of this decision function.

Di!erent loss functions can be used within the context of ordinal regression. The most
commonly used one is the absolute error, which measures the absolute di!erence between
the predicted and true labels. For↵ 2 S, this is deÞned as

`(y,↵) :=
+
+
y � pred(↵)

+
+

. (3)

The absolute error loss is so ubiquitous in ordinal regression that some authors refer to it
simply as the ordinal regression loss (Agarwal, 2008; Ramaswamy and Agarwal, 2012). For

3



Pedregosa, Bach and Gramfort

this reason special emphasis is given in this paper to surrogates of this loss. However, we
will also describe methods that minimize the 0-1 loss (i.e., the classiÞcation error) and in
Section 5 we will see how some results can be generalized beyond these and to general loss
functions that verify a certain admissibility criterion.

In order to Þnd the decision function with minimal risk it might seem appropriate to
minimize Eq. (1). However, this is not feasible in practice for two reasons. First, the
probability distribution P is unknown and the risk must be minimized approximately based
on the observations. Second,̀ is typically discontinuous in its second argument, hence
the empirical approximation to the risk is di#cult to optimize and can lead to an NP-
hard problem (Feldman et al., 2012; Ben-David et al., 2003)1. It is therefore common to
approximate ` by a function  

: Y ⇥ S ! R, called a surrogate loss function, which has
better computational properties. The goal becomes then to Þnd the decision function that
instead minimizes thesurrogate risk, deÞned as

A(f ) := E( (Y, f (X))) . (4)

We are interested by the statistical implications of such approximation. Assuming that
we have full knowledge of the probability distribution that generates the data P , what are
the consequences of optimizing a convex surrogate of the risk instead of the true risk?

The main property that we will study in order to answer this question is that of Fisher
consistency. Fisher consistency is a desirable property for surrogate loss functions (Lin,
2004) and implies that in the population setting, i.e., if the probability distribution P were
available, then optimization of the surrogate would yield a function with minimal risk.
From a computational point of view, this implies that the minimization of the surrogate
risk, which is usually a convex optimization problem and hence easier to solve than the
minimization of the risk, does not penalize the quality (at least in the population setting)
of the obtained solution.

We will use the following notation for the optimal risk and optimal surrogate risk:

L⇤ := inf
f

L(f ) and A⇤ := inf
f

A(f ) ,

where the minimization is done over all measurable functionsX ! S. L⇤ is sometimes
referred to as theBayes risk, and a decision function (not necessarily unique) that minimizes
the risk is called aBayes decision function.

We will now give a precise deÞnition of Fisher consistency. This notion originates from a
classical parameter estimation setting. Suppose that an estimatorT of some parameter✓ is
deÞned as a functional of the empirical distributionP

n

. We denote it T (P
n

). The estimator
is said to be Fisher consistent if its population analog,T (P ), coincides with the parameter
✓. Adapting this notion to the context of risk minimization (in which the optimal risk is
the parameter to estimate) yields the following deÞnition, adapted from Lin (2004) to an
arbitrary loss function `:

Definition 1 (Fisher consistency) Given a surrogate loss function  

: Y ⇥ S ! R, we
will say that the surrogate loss function  is consistent with respect to the loss ` : Y⇥S ! Y

1. Note that binary classification can be seen as a particular case of ordinal regression.
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if for every probability distribution over X ⇥ Y it is verified that every minimizer f of the
surrogate risk reaches Bayes optimal risk, that is,

A(f ) = A⇤ =) L(f ) = L⇤
.

For some surrogates we will be able to derive not only Fisher consistency, but alsoexcess
risk bounds. These are bounds of the form

�(L(f ) � L⇤)  A(f ) �A⇤
,

for some function real-valued function� with �(0) = 0. These inequalities not only imply
Fisher consistency, but also allow to bound the excess risk by the excess in surrogate risk.
These inequalities play an important role in di!erent areas of learning theory, as they
can be used for example to obtain rates of convergence (Bartlett et al., 2003) and oracle
inequalities (Boucheron et al., 2005).

1.2 Full and conditional risk

The above deÞnition of Fisher consistency is often replaced by a point-wise version that
is easier to verify in practice. A key ingredient of this characterization are the notions of
conditional risk and surrogate conditional risk that we will now deÞne. These are denoted
by L and A respectively, and for↵ 2 S and p 2 " k are deÞned by

L(↵, p) :=
k&

i=1

p

i

`(i,↵) and A(↵, p) :=
k&

i=1

p

i

 (i,↵) . (5)

The full and conditional risk are then related by the equations

L(f ) = E
X⇥Y

(`(Y, f (X))) = E
X

E
Y |X (`(Y, f (X))) = E

X

(L(f (X), ⌘(X)))

A(f ) = E
X⇥Y

( (Y, f (X))) = E
X

E
Y |X ( (Y, f (X))) = E

X

(A(f (X), ⌘(X))) ,

where⌘ : X ! " k is the vector of conditional probabilities given by ⌘
i

(x) = P (y = i|X = x).
As for the full risk, we will denote by L

⇤, A⇤ the inÞmum of its value for a givenp 2 " k,
i.e.,

L

⇤(p) = inf
↵2S

L(↵, p) and A

⇤(p) = inf
↵2S

A(↵, p) .

When the risk minimization is performed over functions that can be deÞned indepen-
dently at every x 2 X , it is possible to relate the minimization of the risk with that of the
conditional risk since

inf
f

L(f ) = inf
f

E
X⇥Y

,
`(Y, f (X))

-
= E

X

.
inf
f

E
Y |X (`(Y, f (X)))

/

= E
X

.
inf
↵

L(↵, ⌘(X))
/

.

(6)

This equation implies that the minimal risk can be achieved by minimizing pointwise the
conditional risk L(·), whichÐin generalÐwill be easier that direct minimization of the full risk.
The condition for this, i.e., that the functions be estimated independently at every sample
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point is veriÞed by the set of measurable functions from the sample space into a subset of
Rk (in this case S), which is the typical setting in studies of Fisher consistency. However,
this is no longer true when inter-observation constraints are enforced (e.g. smoothness). As
is common in studies of Fisher consistency, we will suppose that the function class veriÞes
the property of Eq. (6) and we will discuss in Section 6 an important family of functions in
which this requisite is not met.

We will now present a characterization of Fisher consistency based on the pointwise risk
which we will use throughout the paper. Equivalent forms of this characterization have ap-
peared under a variety of names in the literature, such as classiÞcation calibration (Bartlett
et al., 2003; Ramaswamy and Agarwal, 2012), inÞnite sample consistency (Zhang, 2004b)
and proper surrogates (Buja et al., 2005; Gneiting and Raftery, 2007).

Lemma 2 (Pointwise characterization of Fisher consistency) Let A and L be de-
fined as in Eq (5). Then  is Fisher consistent with respect to ` if and only if for all p 2 " k

it is verified that
A(↵, p) = A

⇤(p) =) L(↵, p) = L

⇤(p) . (7)

Proof Let L and A represent the expected value of̀ and  , as deÞned in Equations (1)
and (4) respectively.

( =) ) We will Þrst suppose that Eq. (7) is veriÞed and prove Fisher consistency. Let
f be such that A(f ) = A⇤. Then it is veriÞed that

A(f ) �A⇤ = E
X

(A(f (X), ⌘(X)) �A

⇤(⌘(X))) = 0 .

The value inside the expectation is non-negative by deÞnition ofA⇤. Since this is veriÞed
for all probability distributions over X ⇥ Y , then it must be veriÞed that A(f (x), ⌘(x)) =
A

⇤(⌘(x)) for all x 2 X . By assumption L(f (X), ⌘(X)) = L

⇤(⌘(X)). Hence the excess risk
veriÞes

L(f ) � L⇤ = E
X

(L(f (X), ⌘(X)) � L

⇤(⌘(X))) = E(0) = 0 .

and so is Fisher consistent with respect to`.
( (= ) We will prove that Eq. (7) implies Fisher consistency. We do so by contradiction.

Let us suppose that there exists a surrogate that is Fisher consistent but Eq. (7) is not
veriÞed and arrive to a contradiction. Since Eq. (7) is not veriÞed there exists ÷↵ 2 S and
÷p 2 " k be such that

A(÷↵, ÷p) = A

⇤(÷p) and L(÷↵, ÷p) > L

⇤(÷p) .

Now let P be the probability distribution such that ⌘(x) = ÷p for all x 2 X and let
f

: X ! S the mapping that is constantly ÷↵. Then it is veriÞed that

A(f ) �A⇤ = E
X

(A(f (X), ⌘(X)) �A

⇤(⌘(X))) = E
X

(A(÷↵, ÷p) �A

⇤(÷p)) = 0 ,

and soA(f ) = A⇤. Likewise, the excess risk veriÞes

L(f ) � L⇤ = E
X

(L(f (X), ⌘(X)) � L

⇤(⌘(X))) = E
X

(L(÷↵, ÷p) � L

⇤(÷p)) > 0

and so cannot be Fisher consistent with respect tò . This is contradiction, and conludes
the proof.
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1.3 Summary of main results

The main contribution of this paper is to characterize the Fisher consistency of a wide family
of surrogate loss functions used for the task of ordinal regression. Contrary to known results
for multiclass classiÞcation and ranking, where One-vs-All and RankSVM have been proven
to be inconsistent, in the ordinal regression setting common surrogates such as ORSVM
and proportional odds will be proven to be Fisher consistent. One of the most surprising
results of this paper is that for a particular class of surrogates that verify adecomposability
property, it is possible to provide a characterization of Fisher consistency and excess risk
bounds that generalize those known for convex margin-based surrogates (loss functions of
the form '(Y f (X))) in binary classiÞcation.

We will introduce the surrogate loss functions that we consider in Section 2. These
will be divided between surrogates of the absolute error and surrogate of the 0-1 loss. We
organize their study as follows:

• In Section 3 we characterize theFisher consistency for surrogates of the abso-

lute error. The surrogates that we consider in this section are the all threshold (AT),
the cumulative link (CL) and the least absolute deviation (LAD). Besides Fisher con-
sistency, a decomposability of the AT loss will allow us to provide excess risk bounds
for this surrogate.

• In Section 4 we characterize theFisher consistency of the surrogates of the

0-1 loss. For this loss, denoted immediate threshold (IT), its Fisher consistency will
depend on the derivative at zero of a real-valued convex function.

• In Section 5 weconstruct a surrogate for an arbitrary loss function that veriÞes
an admissibility condition. We name this surrogate generalized all threshold (GAT).
This loss function generalizes the AT and IT loss functions introduced earlier. We
will characterize the Fisher consistency of this surrogate.

• Turning back to one of the topics mentioned in the introduction, we discuss in Sec-
tion 6 the implications of inter-observational constraints in Fisher consis-

tency. Following Shi et al. (2015), we deÞne a restricted notion of consistency
known as F-consistency of parametric consistency and give su#cient conditions for
the F-consistency of two surrogates.

• In Section 7 we examine the empirical performance of a novel surrogate.
This novel surrogate is a particular instance of the GAT loss function introduced in
Section 5 when considering the squared error as evaluation metric. We compare this
novel surrogate against a least squares model on 9 di!erent datasets, where the novel
surrogate outperforms the least squares estimate on 7 out of the 9 datasets.

1.4 Related work

Fisher consistency of binary and multiclass classiÞcation for the zero-one loss has been
studied for a variety of surrogate loss functions (see e.g. Bartlett et al. (2003); Zhang (2004a);
Tewari and Bartlett (2007); Reid and Williamson (2010)). Some of the results in this
paper generalize known results for binary classiÞcation to the ordinal regression setting. In
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particular, Bartlett et al. (2003) provide a characterization of the Fisher consistency for
convex margin-based surrogates that we extend to the all threshold (AT) and immediate
threshold (IT) family of surrogate loss functions. The excess error bound that we provide
for the AT surrogate also generalizes the excess error bound given in (Bartlett et al., 2003,
Section 2.3).

Fisher consistency of arbitrary loss functions (a setting that subsumes ordinal regression)
has been studied for some surrogates. Lee et al. (2004) proposed a surrogate that can take
into account generic loss functions and for which Fisher consistency was proven by Zhang
(2004b). In a more general setting, Ramaswamy and Agarwal (2012, 2014) provide necessary
and su#cient conditions for a surrogate to be Fisher consistent with respect to an arbitrary
loss function. Among other results, they prove consistency of least absolute deviation (LAD)
and an "-insensitive loss with respect to the absolute error for the case of three classes
(k = 3). In this paper, we extend the proof of consistency for LAD to an arbitrary number
of classes. Unlike previous work, we consider the so-calledthreshold-based surrogates (AT,
IT and CL), which rank among the most popular ordinal regression loss functions and for
which its Fisher consistency has not been studied previously.

Fisher consistency has also been studied in the pairwise ranking setting, where it
has been proven (Duchi et al., 2010; Calauzenes et al., 2012) that some models (such as
RankSVM) are not consistent. Despite similarities between ranking and ordinal regression,
we will see in this paper that most popular ordinal regression models are Fisher consistent
under mild conditions.

There are few studies on the theoretical properties of ordinal regression methods. A no-
table example comes from Agarwal (2008), where the authors study generalization bounds
for some ordinal regression algorithms. Some of the surrogate loss functions used by these
models (such as the support vector ordinal regression of Chu and Keerthi (2005)) are ana-
lyzed in this paper. In that work, the authors outline the study of consistency properties
of ordinal regression models as an important question to be addressed in the future.

A related, yet di!erent, notion of consistency is asymptotic consistency. A surrogate
loss is said to be asymptotically consistent if the minimization of the -risk converges to
the optimal risk as the number of samples tends to inÞnity. It has also been studied in the
setting of supervised learning (Stone, 1977; Steinwart, 2002). This paper focuses solely on
Fisher consistency, to whom we will refer simply as consistency from now on.

2. Ordinal regression models

We introduce the di!erent ordinal regression models that we will consider within this paper.
Considering Þrst the absolute error, we will write this loss as a sum of 0-1 loss functions2.
This is a key reformulation of the absolute error that we will use throughout the paper. Let

2. The 0-1 loss, defined as the function that is 1 for negative values and 0 otherwise can be defined in
bracket notation as `0�1(t) = J↵i  0K.
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y 2 Y and ↵ 2 S, then

`(y,↵) =
+
+
y � pred(↵)

+
+=

+
+
+
+
+
+
y � 1�

k�1&

i=1

J↵
i

< 0K

+
+
+
+
+
+

=

+
+
+
+
+
+
y � 1�

y�1&

i=1

J↵
i

< 0K �
k�1&

i=y

J↵
i

< 0K

+
+
+
+
+
+

=

+
+
+
+
+
+

y�1&

i=1

J↵
i

� 0K �
k�1&

i=y

J↵
i

< 0K

+
+
+
+
+
+

.

(8)

Now, if ↵
y

� 0 then the second summand equals zero. Otherwise, if↵
y

< 0, then the
Þrst summand equals zero. In either case, we have

`(y,↵) =
y�1&

i=1

J↵
i

� 0K +
k�1&

i=y

J↵
i

< 0K . (9)

This expression suggests that a natural surrogate can be constructed by replacing the
0-1 loss in the above expression function by a convex surrogate such as the logistic or hinge
loss. Denoting by' : R ! R such surrogate, we obtain the following loss function that we
denote all threshold (AT):

 

AT

(y,↵) :=
y�1&

i=1

'(�↵
i

) +
k�1&

i=y

'(↵
i

) . (10)

This function has appeared under di!erent names in the literature. When ' is the hinge
loss, this model is known as support vector ordinal regression with implicit constraints (Chu
and Keerthi, 2005) and support vector with sum-of-margins strategy (Shashua and Levin,
2003). When' is the exponential loss, this model has been described in (Lin and Li, 2006)
as ordinal regression boosting with all margins. Finally, Rennie and Srebro (2005) provided
a unifying formulation for this approach considering for the hinge, logistic and exponential
loss under the name of All-Threshold loss, a name that we will adopt in this paper.

The name thresholds comes from the fact that in the aforementioned work, the decision
function is of the form ↵

i

= ✓

i

� f (·), where (✓
1

, . . . , ✓

k�1

) is a vector estimated from the
data known as the vector of thresholds. We will discuss in Section 6 the implications of
such decision function. For the prediction rule to give meaningful results it is important to
ensure that the thresholds are ordered, i.e.,✓

1

 ✓

2

, · · · , ✓

k�1

(Chu and Keerthi, 2005).
In our setting, we enforce this constraint by↵ 2 S, hence the importance of restricting the
problem to this subset of Rk�1.

Another family of surrogate loss functions take a more probabilistic approach and
model instead the posterior probability. This is the case of thecumulative link models
of McCullagh (1980). In such models the decision functionf is assumed to be such that
�(f

i

(x)) = P (Y  i|X = x), where � : R ! [0, 1] is a function referred to as link func-
tion. Several functions can be used as link function, although the most used ones are
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the sigmoid function and the Gaussian cumulative distribution. The sigmoid function i.e.,
�(t) = 1 /(1 + exp(�t)), leads to a model sometimes referred as proportional odds (McCul-
lagh, 1980) and cumulative logit (Agresti, 2010), although for naming consistency we will
refer to it as logistic cumulative link. Another important link function is given by the Gaus-
sian cumulative distribution, �(t) = 1p

2⇡

0
t

�1 e

�x

2
/2, used in the Gaussian process ordinal

regression model of Chu and Ghahramani (2004). The cumulative link (CL) loss function
is given by its negative likelihood, that is,

 

CL

(y,↵) :=

#
11$

11%

� log(�(↵
1

)) if y = 1

� log(�(↵
y

) � �(↵
y�1

)) if 1 < y < k

� log(1� �(↵
k�1

)) if y = k .

(11)

We will now consider the 0-1 loss. In this case, the loss will be 1 if the prediction is
below y, i.e., if ↵

y�1

� 0 or if the prediction is abovey, i.e., if ↵
y

< 0. Hence, we can write

`(y,↵) =

#
11$

11%

J↵
1

< 0K if y = 1

J↵
y�1

� 0K + J↵
y

< 0K if 1 < y < k

J↵
k�1

� 0K if y = k .

As for the absolute error, a natural surrogate is given by replacing the 0-1 loss by a convex
surrogate as the hinge or logistic function. Following Rennie and Srebro (2005), we will
refer to this loss function asimmediate threshold (IT):

 

IT

(y,↵) :=

#
11$

11%

'(↵
1

) if y = 1

'(�↵
y�1

) + '(↵
y

) if 1 < y < k

'(�↵
k�1

) if y = k .

(12)

As with the AT surrogate, this loss has appeared under a variety of names in the literature.
When ' is the hinge loss, this model is known as Support Vector Ordinal Regression with
explicit constraints (Chu and Keerthi, 2005) and support vector with Þxed-margins strat-
egy (Shashua and Levin, 2003). For' = exponential loss, this model has been described
by Lin and Li (2006) as ordinal regression boosting with left-right margins. The construc-
tion of the AT and IT surrogates are similar. We will see in Section 5 that both surrogates
can be seen as a particular instance of a more general family of loss functions.

The approaches we have seen so far can be seen as methods that extend known binary
classiÞcation methods to the ordinal regression setting. A di!erent approach consists in
treating the labels as real values and use regression algorithms to learn a real-valued mapping
between the samples and the labels. This ignores the discrete nature of the labels, thus it
is necessary to introduce a prediction function that converts this real value into a label in
Y. This prediction function is given by rounding to the closest label (see, e.g., (Kramer
et al., 2001) for a discussion of this method using regression trees). This approach is
commonly referred to as the regression-based approach to ordinal regression. If we are

10



seeking to minimize the absolute error, a popular loss function is to minimize the least
absolute deviation (LAD). For any � 2 R, this is deÞned as

 

LAD

(y,�) := |y � �| ,

and prediction is then given by rounding � to the closest label. This setting departs from
the approaches introduced earlier by using a di!erent prediction function. However, via
a simple transformation it is possible to convert this prediction function (rounding to the
closest label) to the prediction function that counts the number of non-zero components
deÞned in Eq. (2). For a given� 2 R, this transformation is given by

↵

1

=
3
2
� �, ↵

2

=
5
2
� �, . . . , ↵

i

= i +
1
2
� � . (13)

It is immediate to see that this vector ↵ belongs toS and

pred(↵) = 1 +
k�1&

i=1

Ji +
1
2
< �K

=

#
11$

11%

1 if �  1 + 1

2

i if i� 1

2

 � < i + 1

2

, 1 < i < k

k if � � k � 1

2

= arg min
1ik

|� � i| (rounding to the lower label in case of ties),

hence predicting in the transformed vector↵ is equivalent to the closes label to�. We will
adopt this transformation when considering LAD for convenience, in order to consider it
within the same framework as the other models. With the aforementioned transformation,
the least absolute deviation surrogate is given by

 

LAD

(y,↵) =

+
+
+
+y + ↵

1

� 3
2

+
+
+
+ (14)

Although the surrogate loss function LAD and the absolute loss of Eq. (3) look very similar,
the fundamental di!erence being that the LAD surrogate is convex on↵, while the absolute
error, due to the presence of the function pred is not.

In this section we have introduced some of the most common ordinal regression methods
based on the optimization of a convex loss function. These are summarized in Table 1.

3. Absolute error surrogates

In this section we will assume that the loss function is the absolute error, i.e.,̀ (y,↵) =+
+
y � pred(↵)

+
+ and we will focus on surrogates of this loss. For an arbitrary↵ 2 S, the

conditional risk for the absolute error can be reformulated using the development of the

11



Pedregosa, Bach and Gramfort

Table 1: Surrogate loss functions considered in this paper.

Model Loss Function Also known as

All thresholds (AT)
2

y�1

i=1

'(�↵
i

) +
2

k�1

i=y

'(↵
i

) Implicit constraints (Chu
and Keerthi, 2005), all mar-
gins (Lin and Li, 2006).

Cumulative link (CL) � log(�(↵
y

) � �(↵
y�1

)) Proportional odds (Mc-
Cullagh, 1980), cumulative
logit (Agresti, 2010).

Immediate threshold
(IT)

'(�↵
y�1

) + '(↵
y

) Explicit constraints (Chu
and Keerthi, 2005), Fixed-
margins (Shashua and Levin,
2003)

Least absolute devia-
tion (LAD)

|y + ↵

1

� 0.5| Least absolute error, least
absolute residual, Sum of ab-
solute deviations, `

1

regres-
sion.

absolute error from Eq. (8):

L(↵, p) =
k&

i=1

p

i

3

4
i�1&

j=1

J↵
j

� 0K +
k�1&

j=i

J↵
j

< 0K

5

6

=
k&

i=1

J↵
j

� 0K(1 � u

i

(p)) +
k&

j=1

J↵
j

< 0Ku
i

(p) ,

where u is the vector of cumulative probabilities, i.e., u
i

(p) :=
2

i

j=1

p

j

. Let r = pred( ↵).
Then ↵

r�1

< 0 and ↵
r

� 0, from where the above can be simpliÞed to

L(↵, p) =
r�1&

i=1

u

i

(p) +
k�1&

i=r

(1 � u

i

(p)) .

(15)

Using this expression, we will now derive a minimizer of the conditional risk:

Lemma 3 For any p 2 " k, let ↵(p) be defined as

↵(p) = (2 u

1

(p) � 1, . . . , 2u
k�1

(p) � 1) .

Then, L(·, p) achieves its minimum at ↵(p), that is,

↵(p) 2 arg minL(↵, p) .

12



Proof We will prove that L(↵, p) � L(↵(p), p) for any ↵ 2 S and any p 2 " k. Let p and
↵ be Þxed and we denoter⇤ = pred( ↵(p)) and r = pred( ↵). We distinguish three cases,
r < r

⇤, r > r

⇤ and r = r

⇤.

• r < r

⇤. In this case, using Eq. (15) it is veriÞed that

L(↵, p) � L(↵(p), p) = �
r

⇤�1&

i=r

u

i

(p) +
r

⇤�1&

i=r

(1 � u

i

(p)) = �
r

⇤�1&

i=r

2u
i

(p) � 1 .

Now, by the deÞnition of prediction function, 2u
i

(p) � 1 < 0 for i < r

⇤, and so we
have

L(↵, p) � L(↵(p), p) =
r

⇤�1&

i=r

+
+2u

i

(p) � 1
+
+

.

• r > r

⇤. By same reasoning, it is veriÞed that

L(↵, p) � L(↵(p), p) =
r�1&

i=r

⇤

u

i

(p) �
r�1&

i=r

⇤

(1 � u

i

(p)) =
r�1&

i=r

⇤

2u
i

(p) � 1 .

Since by deÞnition of prediction function 2u
i

(p) � 1 � 0 for i � r

⇤, it is veriÞed that

L(↵, p) � L(↵(p), p) =
r�1&

i=r

⇤

+
+2u

i

(p) � 1
+
+

.

• r = r

⇤. In this case, Eq. (15) yields

L(↵, p) � L(↵(p), p) = 0 .

Let I denote the set of indices for which↵ disagrees in sign with↵, that is, I = {i :
↵

i

(2u
i

(p) � 1) < 0}. Then, combining the three cases we have the following formula for the
excess in conditional risk

L(↵, p) � L(↵(p), p) =
&

i2I

+
+2u

i

(p) � 1
+
+

, (16)

which is always non-negative and henceL⇤(p) = L(↵(p), p).

3.1 All Threshold (AT)

We will now consider the AT surrogate. We will prove that many properties known for
binary classiÞcation are inherited by this loss function. More precisely, we will provide
a characterization of consistency for convex' in Theorem 5 and excess risk bounds in
Theorem 6 that parallel those of Bartlett et al. (2003) for binary classiÞcation.

13
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Through this section A will represent the conditional risk of the AT surrogate, which
can be expressed as:

A(↵, p) =
k&

j=1

p

j

 

AT

(j,↵) =
k&

j=1

p

j

3

4
j�1&

i=1

'(�↵
i

) +
k�1&

i=j

'(↵
i

)

5

6

=
k�1&

i=1

(1 � u

i

(p))'(�↵
i

) + u

i

(p)'(↵
i

) ,

(17)

where as in the previous sectionu
i

(p) =
2

i

j=1

p

i

,↵ 2 S and p 2 " k. This surrogate veriÞes
a decomposable property that will be key to further analysis. The property that we are
referring to is that the above conditional risk it can be expressed as the sum ofk�1 binary
classiÞcation conditional risks. For� 2 R, q 2 [0, 1], we deÞneC as follows

C(�, q) = q'(�) + (1 � q)'(��) ,

where C can be seen as the conditional risk associated with the binary classiÞcation loss
function '. Using this notation, the conditional risk A can be expressed in terms ofC as:

A(↵, p) =
k�1&

i=1

C(↵
i

, u

i

(p)) .

Our aim is to compute A

⇤ in terms of the inÞmum of C, denotedC

⇤(q) := inf
�

C(q,�).
SinceC is the conditional risk of a binary classiÞcation problem, this would yield a link be-
tween the optimal risk for the AT surrogate and the optimal risk for a binary classiÞcation
surrogate. However, this is in general not possible because of the monotonicity constraints
in S: the inÞmum over S, need not equal the inÞmum over the supersetRk�1. We will
now present a result that states su#cient conditions under which the inÞmum overS and
over Rk�1 do coincide. This implies that A⇤ can be estimated as the sum ofk� 1 di!erent
surrogate conditional risks, each one corresponding to a binary classiÞcation surrogate with
di!erent probability distributions. A similar result was proven in the empirical approxi-
mation setting by Chu and Keerthi (2005, Lemma 1). In this work, the authors consider
the hinge loss and show that a minimizer of this loss necessarily veriÞes the monotonicity
constraints in S.

In the following lemma we provide minimal conditions on ' under which the mono-
tonicity constraints can be ignored when computingA⇤. This is an important step towards
obtaining an explicit expression forA⇤:

Lemma 4 Let ' : R ! R be a function such that '(�) �'(��) is a decreasing function of
� 2 R. Then for all p 2 " k, it is verified that

A

⇤(p) =
k�1&

i=1

C

⇤(u
i

(p)) .
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Proof Let p 2 " k be Þxed and let↵⇤ 2 arg min
↵2Rk�1 A(↵

i

, p). If ↵⇤ 2 S, then the result
is immediate since

k�1&

i=1

C

⇤(u
i

(p)) = A(↵⇤
, p) = inf

↵2S
A(↵, p) = A

⇤(p) .

Suppose now↵⇤
/2 S, i.e., there exists a 1 i  k�2 for which the monotonicity conditions

in S are not veriÞed, that is,↵
i+1

< ↵

i

. Since (u
1

(p), . . . , u
k�1

(p)) is an increasing sequence,
for a Þxedp it is possible to write u

i+1

(p) = u

i

(p) + ", with " � 0. Then it is veriÞed that

C(↵⇤
i

, u

i+1

(p)) = (1 � u

i

(p) � ")'(�↵⇤
i

) + ( u
i

(p) + ")'(↵⇤
i

)

= C(↵⇤
i

, u

i

(p)) + "('(↵⇤
i

) � '(�↵⇤
i

)) .

By assumption "('(↵⇤
i

) � '(�↵⇤
i

)) is a decreasing function of↵⇤
i

and so↵⇤
i+1

< ↵

⇤
i

=)
C(↵

i

, u

i+1

(p))  C(↵
i+1

, u

i+1

(p)). By the optimality of ↵

⇤
i+1

, it must be C(↵⇤
i

, u

i+1

(p)) =
C(↵⇤

i+1

, u

i+1

(p)). This implies that the vector in which ↵

⇤
i+1

is replaced by ↵⇤
i

has the
same conditional risk and hence suggest a procedure to construct a vector that satisÞes the
constraints in S and achieves the minimal risk inRk�1. More formally, we deÞne ÷↵ 2 S as:

÷↵
i

=

#
11$

11%

↵

⇤
1

if i = 1

↵

⇤
i

if ↵⇤
i�1

 ↵

⇤
i

↵

⇤
i�1

if ↵⇤
i�1

> ↵

⇤
i

.

Then by the above C(↵⇤
i

, u

i

(p)) = C(÷↵
i

, u

i

(p)) for all i and soA(↵⇤
, p) = A(÷↵, p), which

completes the proof.

It is easy to verify that the condition on ' of this theorem is satisÞed by all the binary
losses that we consider: Hinge loss, the squared Hinge loss, the logistic loss, exponential loss
and the squared loss. With this result, if↵⇤

i

is a minimizer of C(u
i

(p)), then (↵⇤
1

, . . . ,↵

⇤
k�1

)
will be a minimizer of A(p). Hence, the optimal decision function for the aforementioned
values of' is simply the concatenation of known results for binary classiÞcation. These are
compiled in the following table, where we show↵⇤ and A

⇤ for di!erent values of ':

• Hinge AT, : ↵⇤
i

(p) = sign(2u

i

(p) � 1), A

⇤(p) =
2

k�1

i=1

{1�
+
+2u

i

(p) � 1
+
+}.

• Squared Hinge AT, : ↵⇤
i

(p) = (2 u

i

(p) � 1), A

⇤(p) =
2

k�1

i=1

4u
i

(p)(1 � u

i

(p)).

• Logistic AT : ↵⇤
i

(p) = log
7

ui(p)

1�ui(p)

8
, A⇤(p) =

2
k�1

i=1

{E(u
i

(p)) � E(1 � u

i

(p))}, where

E(t) = t log(t).

• Exponential AT : ↵⇤
i

(p) = 1

2

log
7

ui(p)

1�ui(p)

8
, A

⇤(p) =
2

k�1

i=1

2
9
u

i

(p)(1 � u

i

(p)).

• Squared AT, ↵⇤
i

(p) = 2 u

i

(p) � 1, A

⇤(p) =
2

k�1

i=1

(2 � 2u
i

(p))2.
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It is immediate to check that the models mentioned above are consistent since the
decision functions coincides in sign with the minimizer of the risk deÞned in Lemma 3.
Note that the sign of ↵⇤

i

(p) at u

i

(p) = 1

2

is irrelevant, since by Eq. (15) both signs have
equal risk. We now provide a result that characterizes consistency for a convex':

Theorem 5 Let ' : R ! R be convex. Then the AT surrogate is consistent if and only if
' is di↵erentiable at 0 and '0(0) < 0.

Proof We postpone the proof until Section 5, where this will follow as a particular case of
Theorem 11.

We will now derive excess risk bounds for AT. These are inequalities that relate the
excess conditional riskL(↵)�L

⇤, to the excess in surrogate conditional riskA(↵)�A

⇤. For
this, we will make use of the�-transform3 of a loss function (Bartlett et al., 2003). For a
convex function ' this is deÞned as

�(✓) = '(0) � C

⇤
:

1 + ✓

2

;
. (18)

We will now state the excess risk bound of the AT surrogate in terms of the�-transform:

Theorem 6 (Excess risk bounds) Let ' : R ! R be a function that verifies the following
conditions:

• ' is convex.

• ' is di↵erentiable at 0 and '0(0) < 0.

• '(�) � '(��) is a decreasing function of �.

Then for any ↵ 2 S, p 2 " k, the following excess risk bound is verified:

�

:
L(↵, p) � L

⇤(p)
k � 1

;
 A(↵, p) �A

⇤(p)
k � 1

. (19)

Proof Let I denote the set of indices in which the sign of↵ does not coincide with↵, that
is, I = {i :

↵

i

(2u
i

(p) � 1) < 0}. From Bartlett et al. (2003, Lemma 7), we know that if '
is convex and consistent (in the context of binary classiÞcation), then is convex and we
can write

 

:
L(↵, p) � L

⇤(p)
k � 1

;
=  

< 2
i2I |2ui(p) � 1|

k � 1

=

(by Eq. (16))


2

i2I  (|2u
i

(p) � 1|)
k � 1

(by Jensen inequality)

=
&

i2I

 (2u
i

(p) � 1)
k � 1

(by symmetry of  )

=
&

i2I

'(0) � C

⇤ ,
u

i

(p)
-

k � 1
(by deÞnition of  ).

(20)

3. Bartlett et al. (2003) define this as the  -transform. However, since we already use  to denote the
surrogate loss functions we will use letter � in this case.
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Let q 2 [0, 1],� 2 R. If we can further show that �(2q�1)  0 implies'(0)  C(�, q), then
&

i2I

,
'(0) � C

⇤(u
i

(p))
-


&

i2I

,
C(↵

i

, u

i

(p)) � C

⇤(u
i

(p))
-


k�1&

i=1

,
C(↵

i

, u

i

(p)) � C

⇤(u
i

(p))
-

= A(↵, p) �A

⇤(p) (by Lemma 4).

Combining this inequality with Eq. (20), we obtain the theorem. Therefore we only need to
prove that �(2q � 1)  0 implies '(0)  C(�, q). Suppose�(2q � 1)  0. Then by Jensen
inequality

C(�, q) = q'(�) + (1 � q)'(��) � '(q� � (1 � q)�) = '(�(2q � 1)) .

Now, by convexity of ' we have

'(�(2q � 1)) � '(0) + �(2q � 1)'0(0) � '(0) ,

where the last inequality follows from the fact that '0(0) < 0 and �(2q � 1)  0. This
concludes the proof.

Note that we have given the excess risk bounds in terms of the conditional risk. These
can also be expressed in terms of the full risk, as done for example by Bartlett et al. (2003);
Zhang (2004a). Within the conditions of the theorem, is convex and because of Jensen
inequality, it is veriÞed that

�

7
E
X

>
L(f (X), ⌘(X)) � L

⇤(⌘(X))
?8

 E
X

>
�(L(f (X), ⌘(X))

?
.

This, together with Eq. 19 yields the following bound in terms of the full risk

�

:
L(f ) � L
k � 1

;
 E

X

@

�

:
L(f (X), ⌘(X)) � L

⇤(⌘(X))
k � 1

; A

 E
X

.
A(f (X), ⌘(X)) �A

⇤(⌘(X))
k � 1

/

=
A(f ) �A⇤

k � 1

Examples of excess risk bounds. We will now derive excess bounds for di!erent
instances of the AT loss function. The values of� only depend on', so we refer the reader
to Bartlett et al. (2003) on the estimation of � for the Hinge, squared Hinge and Exponential
loss and to (Zhang, 2004a) for the logistic loss. Here, we will merely apply the known form
of � to the aforementioned surrogates.

• Hinge AT, : �(✓) = |✓| =) L(↵, p) � L

⇤(p)  A(↵, p) �A

⇤.

• Squared Hinge AT, : �(✓) = ✓

2 =) (L(↵,p)�L

⇤
(p))

2

k�1

 A(↵, p) �A

⇤.
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• Logistic AT : �(✓) = ✓

2

2

=) (L(↵,p)�L

⇤
(p))

2

2(k�1)

 A(↵, p) �A

⇤.

• Exponential AT : �(✓) = 1 �
p

1� ✓

2 =)
(k � 1)(1 �

B
1� (L(↵,p)�L

⇤
(p))

2

k�1

)  A(↵, p) �A

⇤.

• Squared AT : �(✓) = ✓

2 =) (L(↵,p)�L

⇤
(p))

2

k�1

 A(↵, p) �A

⇤ .

For k = 2, these results generalize the known excess risk bounds for binary surrogates.
For k > 2, the normalizing factor 1

k�1

is not surprising, since contrary to the 0-1 loss, the
absolute error is not bounded by 1 but byk � 1 instead. While similar excess risk bounds
are known for multiclass classiÞcation (Zhang, 2004b;«Avila Pires et al., 2013), to the best
of our knowledge this is the Þrst time that such bounds have been developed for the AT
surrogate (k > 2).

3.2 Cumulative Link (CL)

We now focus on the CL loss function deÞned in Eq. (11). This is a maximum likelihood
estimator, and so the function f

: X ! S that veriÞes

�(f (x)
i

) = P (Y  i|X = x) ,

maximizes the likelihood. Hence, assuming that the inverse of the link function� exists, a
minimizer of the surrogate loss function (given by the negative log-likelihood)↵⇤ 2 S and
A

⇤ are given by

↵

⇤
i

(p) = �

�1(u
i

(p)) , A

⇤(p) =
k&

i=1

p

i

log(p
i

) . (21)

This immediately leads to a characterization of consistency based on the link function�:

Theorem 7 Suppose � is an invertible function. Then the CL surrogate is consistent if
and only if the inverse link function verifies

7
�

�1(t)
8

(2t� 1) > 0 for t 6= 1
2

. (22)

Proof ( (= ) Suppose ��1 does not verify Eq. (22), i.e., there exists a⇠ 6= 1/2 such that
�

�1(⇠)(2⇠ � 1)  0. We consider a probability distribution where u

1

(p) = ⇠ for all p 2 " k.
In that case, by Eq. (21) ↵⇤

1

(p) = ⇠ and so this has a sign opposite to the Bayes decision
function. By Eq. (16) this implies that L(↵⇤) > L

⇤, contradiction since CL is consistent by
assumption.

( =) ) Let 0 < i < k. For u

i

(p) 6= 1/2, ↵⇤
i

(p) agrees in sign with 2u
i

(p) � 1 and so by
Lemma 3 has minimal risk. If u

i

(p) = 1 /2, then in light of Eq. (15) the risk is the same no
matter the value of ↵⇤

i

(p). We have proved that ↵⇤(p) has the same risk as a Bayes decision
function, hence the CL model is consistent. This completes the proof.

The previous theorem captures the notion that the inverse of the link function should
agree in sign with 2t � 1. When the link function is the sigmoid function, i.e., �(t) =
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1/(1 + e

�t) this surrogate is convex and its inverse link function is given by the logit
function, which veriÞes the assumptions of the theorem and hence is consistent. Its optimal
decision function is given by

↵

⇤
i

(p) = log
:

u

i

(p)
1� u

i

(p)

;
,

which coincides with the logistic AT surrogate. Despite the similarities between both sur-
rogates, we have not been able to derive excess risk bounds for this surrogate since the
separability properties of the AT are not met in this case. We Þnish our treatment of
the CL surrogate by stating the convexity of the logistic CL loss, which despite being a
fundamental property of the loss, has not been proven before to the best of our knowledge.

Lemma 8 The logistic CL surrogate is a convex function of in its second argument in the
domain of definition.

Proof We recall that the logistic CL surrogate is deÞned as

 

CL

(y,↵) :=

#
11$

11%

� log(�(↵
1

)) if y = 1

� log(�(↵
y

) � �(↵
y�1

)) if 1 < y < k

� log(1� �(↵
k�1

)) if y = k ,

where � is the sigmoid function.  

CL

(1,↵) and  

CL

(k,↵) are convex because they are
log-sum-exp functions. It is thus su#cient to prove that  

CL

(i, ·) is convex for 1< i < k.

For convenience we will write this function asf (a, b) = � log
7

1

1+exp (a)

� 1

1+exp (b)

8
, where

a > b is the domain of deÞnition.
By factorizing the fraction inside f to a common denominator, f can equivalently be

written as � log(exp(a) � exp(b)) + log(1 + exp( a)) + log(1 + exp( b)). The last two terms
are convex because they can be written as a log-sum-exp. The convexity of the Þrst term,
or equivalently the log-concavity of the function f (a, b) = exp( a) � exp(b) can be settled
by proving the positive-deÞniteness of the matrixQ = rf (a, b)rf (a, b)T � f (a, b)r2

f (a, b)
for all (a, b) in the domain {b > a} (Boyd and Vandenberghe, 2004). In our case,

Q =

3

C
4

exp(a + b) � exp(a + b)

� exp(a + b) exp(a + b)

5

D
6 = exp( a + b)

3

C
4

1 �1

�1 1

5

D
6 ,

which is a positive semideÞnite matrix with eigenvalues 2 exp(a+ b) and 0. This proves that
Q is positive semideÞnite and thus 

CL

(i, ·) is a convex function.

3.3 Least absolute deviation

We will now prove consistency of the least absolute deviation (LAD) surrogate. Consistency
of this surrogate was already proven for the casek = 3 by Ramaswamy and Agarwal (2012).
For completeness, we provide here an alternative proof for an arbitrary number of classes.
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Theorem 9 The least absolute deviation surrogate is consistent.

Proof Recall that for y 2 Y,↵ 2 S, the LAD surrogate is given by

 

LAD

(y,↵) =

+
+
+
+y + ↵

1

� 3
2

+
+
+
+ .

The pointwise surrogate risk is then given by

A(↵, p) =
k&

i=1

p

i

 

LAD

(y,↵) = E
Y⇠p

. +
+
+
+Y + ↵

1

� 3
2

+
+
+
+

/
,

where Y ⇠ p means that Y is distributed according to a multinomial distribution with
parameter p 2 " k. By the optimality conditions of the median, a value that minimizes this
conditional risk is given by

↵

⇤
1

(p) 2 Median
Y⇠p

:
3
2
� Y

;
,

where Med is the median, that is,↵⇤
1

(p) is any value that veriÞes

P

:
3
2
� Y  ↵

⇤
1

(p)
;

� 1
2

and P

:
3
2
� Y � ↵

⇤
1

(p)
;

� 1
2

.

We will now prove that LAD is consistent by showing that L(↵⇤(p), p) = L(↵(p), p), where
↵ is the Bayes decision function described in Lemma 3. Letr⇤ = pred(↵(p)) and I denote
the set I = {i :

↵

⇤
i

(p)(2u
i

(p) � 1) < 0}. Suppose this set is non-empty and leti 2 I. We
distinguish the cases↵⇤

i

(p) > 0 and ↵⇤
i

(p) < 0:

• ↵

⇤
i

(p) < 0. By Eq. (13), ↵⇤
i

and ↵⇤
1

are related by↵⇤
i

= i� 1 + ↵

⇤
1

. Then it is veriÞed
that

P

:
3
2
� Y � ↵

⇤
1

(p)
;

= P

:
3
2
� Y � ↵

⇤
i

� i + 1
;

= P

:
1
2

+ i� ↵

⇤
i

� Y

;

� P

:
1
2

+ i � Y

;
= u

i

(p) .

By assumption, ↵⇤
i

(p)(2u
i

(p) � 1) < 0, which implies u

i

(p) > 1/2. Hence, by the

above we have thatP
7
3

2

� Y � ↵

⇤
1

(p)
8
> 1/2. At the same time, by the deÞnition of

median, P
7
3

2

� Y � ↵

⇤
1

(p)
8
 1/2, contradiction.

• ↵

⇤
i

(p) > 0. Using the same reasoning as before, it is veriÞed that

P

:
3
2
� Y  ↵

⇤
1

(p)
;

= P

:
3
2
� Y  ↵

⇤
i

� i + 1
;

= P

:
1
2

+ i� ↵

⇤
i

 Y

;

� P

:
1
2

+ i  Y

;
= 1 � u

i

(p) .

By assumption u

i

(p) < 1/2 =) P

7
3

2

� Y  ↵

⇤
1

(p)
8
> 1/2. At the same time, by

the deÞnition of median,P
7
3

2

� Y � ↵

⇤
1

(p)
8
 1/2, contradiction.
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Supposing I not empty has lead to contradictions in both cases, henceI = ;. By
Eq. (16), L(↵⇤(p), p) = L(↵(p), p), which concludes the proof.

4. Surrogates of the 0-1 loss

Perhaps surprisingly, one popular model for ordinal regression is not a surrogate of the
absolute error but of the 0-1 loss. In this section we focus on the 0-1 loss and we provide a
characterization of consistency for the immediate threshold loss function.

4.1 Immediate Thresholds

For the immediate threshold, the conditional risk can be expressed as

A(↵, p) =
k&

i=1

p

j

 

IT(j,↵)

=
k�1&

i=1

p

i

'(�↵
i

) + p

i+1

'(↵
i

)

As pointed out by Chu and Keerthi (2005), and contrary to what happened for AT
surrogate, the constraints can not be ignored in general when computingA⇤. Results that
rely on this property such as the excess error bound of Theorem 6 will not translate directly
for the IT loss. However, we will still be able to characterize the functions' that lead to a
consistent surrogate, in a result analogous to Theorem 5 for the AT surrogate.

Theorem 10 Let ' be convex. Then the immediate threshold surrogate is Fisher consistent
if and only if ' is di↵erentiable at 0 and '0(0) < 0.

Proof As for the AT surrogate, this can be seen as a particular case of Theorem 11 with
` the 0-1 loss. We will postpone the proof until Section 5.

5. Extension to other admissible loss functions

In this section we will show that the AT and IT surrogates can be seen as particular
instances of a family of loss functions for which we will be able to provide a characterization
of consistency.

The admissibility criterion that we require on the loss function is that this is of the form
`(i,↵) = g

, +
+
i� pred(↵)

+
+- , where g is an increasing function. Intuitively, this condition

implies that labels further away from the true label are penalized more than those closer by.
This criterion is general enough to contain all losses considered before such as the absolute
error and (albeit in a degenerate sense) 0-1 loss. It also contains other loss functions that
we have not yet considered such as the squared error (g(t) = t

2). A very similar condition
is the V-shape property of (Li and Lin, 2007). This property captures the notion that the
loss should not decrease as the predicted value moves away from the true value by imposing
that ` veriÞes `(y,↵)  `(y,↵0) for

+
+
y � pred(↵)

+
+ 

+
+
y � pred(↵0)

+
+. The only di!erence

between the two conditions is that our admissibility criterion adds a symmetric condition,
i.e., ` veriÞes that the loss of predictinga when the true label is b is the same as the loss
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of predicting b when the true label is a, which is not necessarily true for V-shaped loss
functions. We conjecture that the results in this section are valid for general V-shaped loss
functions, although for simplicity we have only proven results for symmetric V-shaped loss
functions. For the rest of this section, we will consider that ` is a loss function that veriÞes
the admissibility criterion.

Let c

i

= g(i) � g(i � 1) and note that with this notation g can always be written as a
sum of c

i

with the formula g(i) =
2

i

j=1

c

j

and that c

i

� 0 by the admissibility property.
Using this notation, and following the same development as in Eq. (8), any admissible loss
function can be written as a sum ofc

i

as

`(y,↵) = g

3

4
y�1&

i=1

J↵
i

� 0K +
k�1&

i=y

J↵
i

< 0K

5

6 =
y�1&

i=1

c

y�i

J↵
i

� 0K +
k�1&

i=y

c

i�y+1

J↵
i

< 0K . (23)

In light of this, it seems natural to deÞne a surrogate for this general loss function by
replacing the 0-1 loss with a surrogate as the hinge or logistic that we will denote by'.
This deÞnes a new surrogate that we will denotegeneralized all threshold (GAT):

 

GAT

(y,↵) :=
y�1&

i=1

'(�↵
i

)c
y�i

+
k�1&

i=y

'(↵
i

)c
i�y+1

.

In the special case of the absolute error,c
i

is identically equal to 1 and we recover AT
loss of Eq. (10). Likewise, for the zero-one loss,c

i

will be one for i 2 {y � 1, y} and zero
otherwise, recovering the IT loss of Eq. (12). We will now present the main result of this
section, which has Theorems 5 and 10 as particular cases.

Theorem 11 Let ' be convex. Then the GAT surrogate is consistent if and only if ' is
di↵erentiable at 0 and '0(0) < 0.

Before presenting the proof this theorem, we will need some auxiliary results. Unlike
for the absolute error, in this case we will not be able to derive a closed form of the optimal
decision function. However, we will be able to derive a formula for the excess risk in terms
of the functions u, v

: " k ! Rk�1, deÞned as

u

i

(p) =
i&

j=1

p

j

c

i�j+1

v

i

(p) =
k&

j=i+1

p

j

c

j�i

.

Note that we have overloaded the functionu deÞned in Section 3. This is not a coincidence,
as when` is the absolute error both deÞnitions coincide. Using this notation, the surrogate
risk can be conveniently written as

A(↵, p) =
k&

i=1

p

i

 

GAT

(i,↵) =
k&

i=1

p

i

3

4
i�1&

j=1

'(�↵
j

)c
i�j

+
k�1&

j=i

'(↵
j

)c
j�i+1

5

6

=
k�1&

i=1

v

i

(p)'(�↵
i

) + u

i

(p)'(↵
i

) ,

and we have the following formulas for the excess risk:
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Lemma 12 Let p 2 " k, ↵ 2 S, r = pred(↵) and r

⇤ be the label predicted by any Bayes
decision function at p. Then, it is verified that

L(↵, p) � L

⇤(p) =

#
111111$

111111%

r

⇤&

i=r

(v
i

(p) � u

i

(p)) if r < r

⇤

r�1&

i=r

⇤

(u
i

(p) � v

i

(p)) if r > r

⇤
.

Proof The risk can be expressed in terms ofu
i

and v

i

as

L(↵) =
k&

i=1

p

i

g(|r � i|) =
r�1&

i=1

p

i

g(r � i) +
k&

i=r+1

p

i

g(i� r)

=
r�1&

i=1

p

i

r�i&

j=1

c

j

+
k&

i=r+1

p

i

i�r&

j=1

c

j

=
r�1&

i=1

u

i

+
k�1&

i=r

v

i

,

(24)

hence forr < r

⇤,

0  L(↵) � L

⇤ =
r�1&

i=1

u

i

+
k�1&

i=r

v

i

�

3

4
r

⇤�1&

i=1

u

i

+
k�1&

i=r
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6 =
r
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(v
i
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) ,

and similarly for r > r

⇤

0  L(↵) � L

⇤ =
r�1&

i=1

u

i

+
k�1&

i=r

v

i
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+
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⇤
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6 =
r�1&

i=r

⇤

(u
i

� v

i

) ,

Proof [Proof of Theorem 11] This proof loosely follows the steps by Bartlett et al. (2003,
Theorem 6), with special care to ensure that the optimal value of the surrogate risk lies
within S and adapted to consider multiple classes. We denote by↵⇤ the value in S that
minimizes A(·), by r the prediction at ↵⇤ and by r

⇤ the prediction of any Bayes decision
function. For simplicity, we consider p to be Þxed and write u

i

, v

i

to denote u

i

(p), v
i

(p)
respectively.

( =) ) We Þrst prove that consistency implies' is di!erentiable at 0 and '

0(0) < 0.
Since' is convex, we can Þnd subgradientsg

1

� g

2

such that, for all � 2 R

'(�) � g

1

� + '(0)

'(�) � g

2

� + '(0) .
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Then we have for all i

v

i

'(��) + u

i

'(�) � v

i

(g
1

� + '(0)) + u

i

(�g

2

� + '(0))

= ( v
i

g

1

� u

i

g

2

)� + ( v
i

+ u

i

)'(0) .

(25)

For 0 < " < 1/2, we will consider the following vector of conditional probabilities

p =
:

0, · · · , 0, 1
2
� ",

1
2

+ "

;
,

from where u

i

and v

i

take the following simple form

u

i
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*
p

k�1
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1

if i = k � 1

0 otherwise
, v
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=

*
p

k

c

1

if i = k � 1

p

k�1

c

k�r�1

+ p

k

c

k�r

otherwise

hence by Eq. (24) consistency impliesr = k and so we must have↵⇤
k�1

< 0.
Let now ÷↵ 2 S be a vector that equals↵⇤ in all except the last component, which is

zero (i.e., ÷↵
k�1

= 0). We will now prove that if g

1

> g

2

then A(÷↵, p) < A(↵⇤
, p) leading to a

contradiction. Given that g
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2

, it is always possible to choose" > 0 such that it veriÞes

1 <
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=
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1� 2"

<

g

2

g

1

,
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�u

k�1
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)↵⇤
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> 0. Replacing in Eq. (25)
yields
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= A(÷↵, p) ,

contradiction, so we can say that if the GAT loss is consistent, then' is di!erentiable at 0.
To see that we must also have'0(0) < 0, notice that from Eq. (25) we have

A

i

(�) � (v
i

� u

i

)'0(0)� + A

i

(0) .

But for any v

i

> u

i

and � < 0, if '0(0) � 0, then this expression is greater thanA
i

(0).
Hence, if GAT is consistent then'0(0) < 0, which concludes one of the implications of the
proof.

( (= ) We now prove that if ' is di!erentiable at 0 and '

0(0) < 0, then GAT is
consistent.
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The Þrst order optimality conditions states that there exists �
i

� 0 such that the optimal
value of A(↵, p) subject to ↵ 2 S is the minimizer of the following unconstrained function:

G(↵) = A(↵, p) +
k�1&

i=1

�

i

(↵
i

� ↵

i+1

) .

We show that assuming GAT is not consistent (i.e.,L(↵⇤) > L

⇤) leads to a contradiction
and hence GAT must be consistent.

We start by computing the partial derivative of G at zero:
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,

were for convenience�
0

= 0. Note that at i = r, ↵⇤ veriÞes↵⇤
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< 0  ↵

⇤
r

by deÞnition of
prediction function. Hence, by complementary slackness�

r�1

= 0. Supposer < r

⇤. Then,
the addition of all partial derivatives between r and r
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which by Lemma 12 is strictly positive. However, by the deÞnition of prediction function,
↵

⇤
i�r

� 0 and so by convexity@G/@↵

i�r

 0 at ↵
i

= 0, contradiction.
Likewise, supposer > r

⇤. Then, the addition of all partial derivatives between r

⇤ and r

yields
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which by Lemma 12 is strictly negative. However, by the deÞnition of prediction function,
↵

⇤
i<r

< 0 and so by convexity@G/@↵

i�r

� 0 at ↵
i

= 0, contradiction.

6. Threshold-based decision functions and parametric consistency

In this section we revisit the assumption that the optimal decision function can be estimated
independently at each pointx 2 X . This is implicitly assumed on most consistency studies,
however in practice it is often the case to have models that enforce inter-observational
constraints (e.g. smoothness). In the case of ordinal regression it is often the case that the
decision functions are of the form

f (x) = ( ✓
1

� g(x), ✓
2

� g(X), . . . , ✓
k�1

� g(X)) , (26)

where (✓
1

, . . . , ✓

k�1

) is an increasing vector (i.e., its components form an increasing se-
quence) known as thevector of thresholds (hence the appearance of the name thresholds in
many models) andg is a measurable function. We will call decision functions of this form
threshold-based decision functions. All the examined models with the exception of the least
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absolute deviation are commonly constrained to this family of decision functions (Chu and
Keerthi, 2005; Rennie and Srebro, 2005; Lin and Li, 2006; Shashua and Levin, 2003).

The main issue with such decision functions is that since the vector of thresholds is
estimated from the data, it is no longer true that the optimal decision function can be
estimated independently at each point. This implies that the pointwise characterization of
Fisher consistency described in Lemma 2 does no longer hold when restricted to this family
and hence the consistency proofs of past sections break down.

Let F be the set of functions of the form of Eq. (26). We will now apply the notion of
F-consistency or parametric consistency of (Shi et al., 2015) to the threshold-based setting.
This is merely the notion of Fisher consistency where the decision functions are restricted
to a family of interest:

Definition 13 (F-Consistency) Given a surrogate loss function  : Y ⇥ S ! R, we will
say that the surrogate loss function  is F-consistent with respect to the loss ` : Y ⇥S ! Y
if for every probability distribution over X ⇥ Y it is verified that every minimizer of the
 -risk reaches the optimal risk in F , that is,

f

⇤ 2 arg min
f2F

A(f ) =) L(f⇤) = inf
f2F

L(f ) .

We will show that by imposing additional constraints on the probability distribution P

we will be able to deriveF-consistency for particular surrogates in the following theorem.

Theorem 14 Let R denote the odds-ratio at x 2 X , that is,

R

i

(x) =
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i

(⌘(x))
1� u

i

(⌘(x))
· 1� u

i+1

(⌘(x))
u

i+1

(⌘(x))
,

where ⌘(x) is the vector of conditional probabilities defined in Section 1.2. Then, if the
odds-ratio is independent of x for all 0 < i < k � 1, that is, if

R

i

(x
1

) = R

i

(x
2

) 8x
1

, x

2

2 X

then the logistic all threshold and the logistic CL are F-consistent.

Proof It will be su#cient to prove that under the constraints on P , the optimal decision
function for the unconstrained problem belongs toF . In Section 3 we derived the optimal
decision function for the logistic all threshold and the logistic CL. Hence, we can write

↵

⇤
i

(⌘(x)) � ↵

⇤
i+1

(⌘(x)) = log
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i
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1� u
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;
� log
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(⌘(x))
1� u

i+1

(⌘(x))

;
= log

:
R

i

(x)
R

i+1

(x)

;

Since the condition that ↵ is a threshold-based decision if and only if↵
i

� ↵

i+1

does not
depend onx 2 X , the result follows by the monotonicity of log.
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7. Experiments: A novel surrogate for the squared error

While the focus of this work is a theoretical investigation of consistency, we have also
conducted experiments to study a novel surrogate suggested by the results of the last section.
There, we constructed a surrogate that is consistent with any loss function that veriÞes an
admissible criterion. One example of such loss function is the squared error,

`(y,↵) = ( y � pred(↵))2 .

One of the byproducts of Theorem 11 is that this surrogate is consistent with respect to
the squared error:

 (y,↵) =
y�1&

i=1

'(�↵
i

)(2(y � i) � 1) +
k�1&

i=y

'(↵
i

)(2( i� y) + 1) .

To the best of our knowledge, this is a novel surrogate. We compare the cross-validation
error of this surrogate on di!erent datasets against the least squares surrogate:

 

LS

(y,�) = ( y � �)2 ,

where � 2 R and prediction is given by rounding to the closest integer. In both cases, we
consider linear decision functions, i.e.

↵ = ( ✓
1
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The di!erent datasets that we will consider are described in (Chu and Keerthi, 2005) and
can be download from the authors website4. We display results for the 9 datasets of SET I
using the version of the datasets with 5 bins, although similar results were observed when
using the datasets with 10 bins. Given the small dimensionality of the datasets (between
6 and 60) and the comparatively high number of samples (between 185 and 4000), we did
not consider the use of regularization.

Performance is computed as the squared error on left out data, averaged over 20 folds.
We report this performance in Figure 7, where it can be seen that the GAT surrogate
outperforms LS on 7 out of 9 datasets, showing that GAT yields a highly competitive
surrogate in practice.

4. http://www.gatsby.ucl.ac.uk/
~

chuwei/ordinalregression.html.
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Figure 1: Scores of the generalized all threshold (GAT) and least squares (LS) surrogate on 6
di!erent datasets. The scores are computed as the squared error between the pre-
diction and the true labels on left out data, averaged over 20 cross-validation folds.
On 7 out of 9 datasets all the GAT surrogate outperforms the least squares esti-
mator, showing that this surrogate yields a highly competitive model. Datasets
for which a Wilcoxon signed-rank test rejected the null hypothesis that the means
are equal with p-value < 0.01 are highlighted by a⇤ symbol over the bars.
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8. Conclusions

In this paper we have characterized the consistency for a rich family of surrogate loss
functions used for ordinal regression. Our aim is to bridge the gap between the consistency
properties known for classiÞcation and ranking and those known for ordinal regression.

We have Þrst described a wide family of ordinal regression methods under the same
framework. The surrogates of the absolute error that we have considered are the all thresh-
old (AT), cumulative link (CL), and least absolute deviation (LAD), while the surrogate
for the 0-1 loss is the immediate threshold (IT).

For all the surrogates considered, we have characterized its consistency. For AT and IT,
consistency is characterized by the derivative of a real-valued convex function at zero (The-
orems 5 and 10 respectively). For CL, consistency is characterized by a simple condition
on its link function (Theorem 7) and for LAD we have extended the proof of Ramaswamy
and Agarwal (2012) to an arbitrary number of classes (Theorem 5). Furthermore, we
have proven that AT veriÞes a decomposability property and using this property we have
provided excess risk bounds that generalize those of Bartlett et al. (2003) for binary classi-
Þcation(Theorem 6).

The derivation we have given when introducing IT and AT are identical except for the
underlying loss function. This suggest that both can be seen as special cases of a more
general family of surrogates. In Section 5 we have constructed such surrogate and charac-
terized its consistency with respect to a general loss function that veriÞes an admissibility
condition. Again, the characterization only relies on the derivative at zero of a convex
real-valued function. We named this surrogate generalized all threshold (GAT).

In Section 6 we have turned back to examine one of the assumptions described in the
introduction and that is common to the vast majority of consistency studies, i.e., that the
optimal decision function can be estimated independently at every sample. However, in
the setting of ordinal regression it is common for decision functions to have a particular
structure known as threshold-based decision functions and which violates this assumption.
Following (Shi et al., 2015), we are able to prove a restricted notion of consistency known as
F-consistency or parametric consistency on two surrogates by enforcing constraints on the
probability distribution P . We believe this restricted notion of consistency to be important
in practice and we look forward to see consistency studies extended to consider di!erent
types of decision functions, such as smooth functions, polynomial functions, etc.

Finally, in Section 7 we provide an empirical comparison for the GAT surrogate. The
underlying loss function that we consider in this case is the squared error, in which case GAT
yields a novel surrogate. We compare this surrogate against the least squares surrogate in
terms of cross-validation error. Our results show that GAT outperforms least squares on 7
out of 9 datasets, showing the pertinence of such surrogate on real-world datasets.
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